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Abstract

The Hénon—Heiles system in the general form has been considered. In a nonintegrable case
with the help of the Painlevé test new solutions have been found as formal Laurent or
Puiseux series, depending on three parameters. One of parameters determines a location of
the singularity point, other parameters determine coefficients of series. It has been proved,
that if absolute values of these two parameters are less or equal to unit, then obtained series
converge in some ring. For some values of these parameters the obtained Laurent series
coincide with the Laurent series of the known exact solutions.
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1 THE PAINLEVE PROPERTY AND INTEGRABI-
LITY

A Hamiltonian system in a 2s—dimensional phase space is called completely
integrable (Liouville integrable) if it possesses s independent integrals which
commute with respect to the associated Poisson bracket. When this is the case,
the equations of motion are (in principal, at least) separable and solutions can
be obtained by the method of quadratures.

When we study some mechanical or field theory problem, we imply that time
and space coordinates are real, whereas the integrability of motion equations
is connected with the behavior of their solutions as functions of complex time
and (in the case of the field theory) complex spatial coordinates.

S.V. Kovalevskaya was the first, who proposed [1] to consider time as a com-
plex variable and to demand that solutions of the motion equations have to be
single-valued, meromorphic functions on the whole complex (time) plane. This
idea gave a remarkable result: S.V. Kovalevskaya discovered a new integrable
case (nowadays known as the Kovalevskaya’s case) for the motion of a heavy
rigid body about a fixed point [1] (see also [2]). The work of S.V. Kovalevskaya,
has shown the importance of application of the analytical theory of differen-
tial equations to physical problems. The essential stage of development of this
theory was a classification of ordinary differential equations (ODE’s) in order
of types of singularities of their solutions. This classification has been made by
P. Painlevé.

Let us formulate the Painlevé property for ODE’s. Solutions of a system
of ODE’s are regarded as analytic functions, may be with isolated singular
points [3, 4]. A singular point of a solution is said critical (as opposed to
noncritical) if the solution is multivalued (single-valued) in its neighborhood
and mouvable if its location depends on initial conditions!.

Definition. A system of ODE’s has the Painlevé property if its general
solution has no movable critical singular point [5, 6].

An arbitrary solution of such system is single-valued in the neighborhood

tSolutions of a system with a time-independed Hamiltonian can have only
movable singularities.



of its singular point ¢y and can be expressed as a Laurent series with a finite
number of terms with negative powers of t —t,. If a system has not the Painlevé
property, but, after some change of variables, the obtained system possesses this
property, then the initial system is said to have the weak Painlevé property.

Investigations of many dynamical systems, Hamiltonian [7-9] or dissipative
(for example, the Lorenz systems [9-12]), show, that a system is completely inte-
grable only for such values of parameters, at which it has the Painlevé property
(or the weak Painlevé property). Arguments, which clarify the connection be-
tween the Painlevé analysis and the existence of motion integrals, are presented
in [13, 14]. If the system misses the Painlevé property (has complex or irrational
"resonances"), then the system cannot be "algebraically integrable-[15] (see al-
so [16] and references therein). At the same time the integrability of an arbitrary
system with the Painlevé property has yet to be proved. There is not an algo-
rithm for construction of the additional integral by the Painlevé analysis. It is
easy to give an example of an integrable system without the Painlevé proper-
ty [17): H = 3p* + f(z), where f(z) is a polynomial which power is not lower
than five. The given system is trivially integrable, but its general solution is
not a meromorphic function.

The Painlevé test is any algorithm designed to determine necessary condi-
tions for a differential equation to have the Painlevé property. The original
algorithm, developed by P. Painlevé and used by him to find all the second or-
der ODE’s with Painlevé property [6], is known as the a-method. The method of
S.V. Kovalevskaya is not as general as the a—method, but much more simple?.

In 1980, motivated by the work of S.V. Kovalevskaya [1], M.J. Ablowitz,
A. Ramani and H. Segur [19] developed a new algorithm of the Painlevé test for
ODE’s. The remarkable property of this test is that it can be checked in a finite
number of steps. They also were the first to point out the connection between
the nonlinear partial differential equations (PDE’s), which are soluble by the
inverse scattering transform method, and ODE’s with the Painlevé property.
Subsequently the Painlevé property for PDE was defined and the corresponding
Painlevé test (the WTC procedure) was constructed |20, 21] (see also [18, 22~
25]). With the help of this test it has been found, that all PDE’s, which are
solvable by the inverse scattering transforms, have the Painlevé property, may
be, after some change of variables. For many integrable PDE’s, for example,
the Korteweg-de-Vries equation [9], the Bécklund transformations and the Lax

2Different variants of the Painlevé test are compared in [18, R. Conte paper]



representations result from the WTC procedure |21, 26]. Also, special solutions
for certain nonintegrable PDE’s were constructed using this algorithm [27, 28].

The algorithm for finding special solutions for ODE system in the form of a
finite expansion in powers of unknown function (¢t —tg) has been constructed
in [29]. The function ¢(t — ty) and coefficients have to satisfy some system of
ODE, often more simple than an initial one. This method has been used [30]
to construct exact solutions for certain nonintegrable systems of ODE’s.

The aim of this paper is to find new special solutions for the generalized
Hénon-Heiles system using the Painlevé test. In distinction to [30] we obtain
solutions as formal Laurent or Puiseux series and find domains of their conver-
gence.

2 THE HENON-HEILES HAMILTONIAN

Let us consider the motion of a star in an axial-symmetric and time-independent
potential. The motion equations admit two well-known integrals (energy and
angular momentum) and would be solved by the method of quadratures if the
third integral of motion is known. Due to the symmetry of the potential the
considered system is equivalent to two-dimensional one. However, for many
polynomial potentials the obtained system has not the second integral as a
polynomial function.

In the 1960s, asymptotic methods [31, 32| have been developed to show ei-
ther existence or absence of the third integral for some polynomial potentials.
To answer the question about the existence of the third integral Hénon and
Heiles [33] considered the behavior of numerically integrated trajectories. Em-
phasizing that their choice of potential does not proceed from experimental
data, Hénon and Heiles have proposed the following Hamiltonian:

H= %($?+yf+w2+y2)+w2y— %yg (1)
because: on the one hand, it is analytically simple; this makes the numerical
computations of trajectories easy; on the other hand, it is sufficiently compli-
cated to give trajectories which are far from trivial. Indeed, for low energies the
Hénon—Heiles system appears to be integrable, in so much as trajectories (nu-
merically integrated) always lay on well-defined two-dimensional surfaces. On
the other hand, for high energies many of these integral surfaces are destroyed,

it points on absence of the third integral.
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Subsequent numerical investigations [34, 35| show, that in the complex
t-plane singular points of solutions of the motion equations group in self-similar
spirals. It turns out extremely complicated distributions of singularities, form-
ing a boundary, across which the solutions can not be analytically continued.

The generalized Hénon—Heiles system is described by the Hamiltonian:

1 C
H:5(:1:?+y,52—|—)\a:2—|—y2)—|—x2y—§y3 (1)
and the corresponding system of the motion equations:
Ty = —Axr — 2zy, @)
y = —y—z*+ Oy’

where xy = ‘5733 and yy = %, A and C are numerical parameters.
Due to the Painlevé analysis the following integrable cases of (2) have been
found:

i) C=-1, A=1,
(i) C = —6, A is an arbitrary number,
(i) C=-16, A=14.

In contradiction to the case (i) the cases (ii) and (iii) are nontrivial, so
the integrability of these cases had to be proved additionally. In the 1980’s
the required second integrals were constructed [36-39]. For integrable cases
of the Hénon-Heiles system the Bécklund transformations [29] and the Lax
representations [22, 23, 40] have been found. In [41] the connection between
the three integrable cases of the Hénon-Heiles system and some integrable
partial differential equations was shown.

The Hénon—Heiles system is a model widely used in physics, in particular,
in gravitation [42-44] and plasma theory [45]. The models, described by the
Hamiltonian (1") with some additional nonpolynomial terms, are actively stud-
ied [46-48| as well.

3 NONINTEGRABLE CASES

The general solutions of the Hénon—Heiles system are known only in integrable
cases [48], in other cases search of new (exact or asymptotic) solutions is an
actual problem.



The procedure for transformation the Hamiltonian to a normal form and for
construction the second independent integral in the form of formal power series
in the phase variables x, z;, y and y; (Gustavson integral) has been realized for
the Hénon—Heiles system both in the original (A = 1, C = 1) [32] (see also [49])
and in the general forms [50, 51]. Using the Bruno algorithm [52, 53] V.F. Ed-
neral has constructed the Poincaré-Dulac normal form and found [54, 55]
(provided that all phase variables are small) local families of periodic solutions.
Recently it has been found that a local series around the singularities in the
complex (time) plane can be transformed to some local series around the sin-
gularities at the fixed points in phase space and analyzed via normal forms
theory [56, 57|.

The Hénon—Heiles system as a system of two second order ODE’s is equiv-
alent to the fourth order equation?:

Y = (2C = 8)yuy — (AN + Dyu + 2(C + 1)yt2+

20C (3)
+ T?ﬁ + (4C\ — 6)y2 — Ay — 4H,
where H is the energy of the system.
To find a special solution of the given equation one can assume that y
satisfies some more simple equation. For example, the well-known solutions in
terms of the Weierstrass elliptic functions [58, 59| satisfy the following first-

order differential equation:

y? = Ay® + By* + Cy + D, (4)

where

fiz%C’, B=-1, C=0 and D=2H (4a)

or

sFor given y(t) the function x2(¢) is a solution of a linear equation. System
(2) is invariant to exchange = to —zx.



. 4
A= -3
- 1 —
g - L= (C+
C+1

i 3C%A2 — 3C*A\ 4+ 8CN* — TCA — C +4X\* —2) — 2

- 3 2 ’

3C% +10C2 4+ 11C + 4 (10)

5 _ 24CTH + 104C°H — 9C°\ + 6C°N” + 3C°\

4(3C5 4 22C* 4 60C3 + 78C? + 49C + 12)

168C%H — 30C2\3 4+ 13C%)\2 + 16C?\ + C?

4(3C5 4 22C* 4 60C3 + 78C? + 49C + 12)

120CH — 28CX\3 +24C\ 4+ 4C 4+ 32H — 8)\3 —4)2 + 8\ + 4
4(3C° +22C* 4 60C3 4 78C2% + 49C + 12) '

_|_

D is proportional to energy H (arbitrary parameter), therefore, solutions (4a)
and (4b) are two-parameter ones.
E.I. Timoshkova [60] generalized equation (4):

y2 = Ay® + By + Cy + D + Gy®/? + E3/2 (5)

and found new one-parameter sets of solutions of the Hénon—Heiles system in

nonintegrable cases (C' = — % or C' = — 1—56, A is an arbitrary number).
These solutions (i.e. solutions with G # 0 or £ # 0) are derived only at D = 0,

therefore, substitution y = ¢? gives:
1 - . . . .
of = ; (A" +Go" + Bo* + £0 +C). (6)

The general solution of (6) has one arbitrary parameter and can be expressed
in elliptic functions.

In this paper I analyze system (2) at C' = — % and A\ = % (the Solution 2.2
of the paper [60]). In this case equation (5) is:

32 4 81
2 3 2 5/2

and, depending on a choice of a sign before the last term, we obtain either (in
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case of sign +):

25(1 — sin (e
Yy = — > 5 and r? = 5 sm( . ))37 (8.1)
3(1—3sin (52)) 9 (1 —3sin (52))
or (in case of sign —):
25(1 + sin (S
y=- ° 5 and 2% = (1 +sin (5 ))3 (8.2)
3(1+3sin(5)) 9 (1+3sin(52))

4 RESULTS OF THE PAINLEVE TEST FOR THE
HENON-HEILES SYSTEM

The Ablowitz—Ramani—Segur algorithm of the Painlevé test appears very useful
to find asymptotic solutions as a formal Laurent series.

We assume that the behavior of solutions in a sufficiently small neighborhood
of the singularity is algebraic, it means that = and y tend to infinity as some
powers of ¢ — t:

r=a.(t—1t)* and  y=bs(t—1ty)", (9)

where o, 8, a, and bg are some constants. We assume that real parts of o and
B are less then zero, and, of course, a, 7# 0 and bg # 0.
If @ and B are integer numbers, then substituting

Nmam

T =an(t—10)*+ Y ajpalt — to)*, (10.1)
j=1

Nimaa
y = byt —to)” + Y bjpslt — to)’*’ (10.2)

j=1
one can transform the ODE system into a set of linear algebraic systems in
coefficients a; and by. In the general case one can obtain the exact solutions (in
the form of formal Laurent series) only if one solves infinity number of systems
(Nyaz = 00). On the other hand, if one solves a finite number of systems one
obtains asymptotic solutions. With the help of some computer algebra system,
for example, the system REDUCE |[61, 62|, these systems can be solved step



by step and asymptotic solutions can be automatically found with any accu-
racy. But previously one has to determine values of constants «, 3, a, and bb’
and to analyze systems with zero determinants. Such systems correspond to
new arbitrary constants or have no solutions. Powers at which new arbitrary
constants enter are called resonances. The Painlevé test gives all information
about possible dominant behaviors and resonances (see, for example, [9]). More-
over, the results of the Painlevé analysis point to cases, in which it is useful to
include into expansion terms with fractional powers of ¢ — .

For the generalized Hénon-Heiles system there exist two possible dominant
behaviors and resonance structures [9, 35|:

Case I: Case 2: (6 < Re(a)) < 0)

o= —2. o li\/12—48/0,

5 = _27 5 — _2’

a, = £3v2+ C, a, = ¢; (an arbitrary number),

_ _ 6

bﬂ — _3, bﬂ — 6,

r=—1,6 3£ Y 2D 1 1 0,6, 7/1—48/C.
In the Table the values of  denote resonances: r = —1 corresponds to arbi-

trary parameter to; r = 0 (in the Case 2) corresponds to arbitrary parameter
¢;. Other values of r determine powers of ¢, to be exact, t**" for z and t°+" for
y, at which new arbitrary parameters enter (as solutions of systems with zero
determinants).

For integrability of system (2) all values of o and r have to be integer (or
rational) and all systems with zero determinants have to have solutions at all
values of included in them free parameters. It is possible only in the cases (i)
— (iii).

At C' = —2 (in the Case 1) a, = 0. It is the consequence of the fact that,
contrary to our assumption, the behaviour of the solution in the neighborhood of
a singular point is not algebraic, because its dominant term includes logarithm.

Those values of C', at which a and r are integer (or rational) numbers either
only in the Case I or only in the Case 2, are of interest for search of special
solutions.
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5 NEW SOLUTIONS

5.1 Finding of solutions in the form of formal Laurent series

Let us consider the Hénon—Heiles system with C' = — %. In the Case 1 some
values of r are not rational, so it is a nonintegrable system. To find special
asymptotic solutions let us consider the Case 2. In this case @ = — % and
r = —1, 0, 4, 6, hence, in the neighborhood of the singular point ¢, we have
to seek z in such form that z? can be expand into Laurent series, beginning

from (¢ — ty) 3. Let to = 0, substituting

s . 15 s .
_ —2 . - _ =2 .
=1/t (clt + E ajtj> and y=-3 i+ E bit!

in (2), we obtain the following sequence of linear system in ay and b:

( k-1
(/CQ — 4)ak + QClbk = —Aap_o — 2 Z ajbk_j_g
j=—1
e (11)
((k — 1)k‘ — 12)bk = — bk_g — Z a;ap—j—3 — E Z bjbk_j_g.
\ j=-2 j=-1

If k = 2or k = 4, then the determinant of (11) is equal to zero. To determine
as and by we have the following system:

(

¢,(557056¢5 + (15552000 — 4860000)c? + 8640000005, +
+ 108000000A% — 67500000\ + 10546875) = 0,

818176¢] + (15660000 — 4893750)c; —
| — 8100000006, — 6328125 = 0.

(12)

As one can see this system does not include terms, which are proportional
to ag, hence, as is an arbitrary parameter (a constant of integration).

We discard the solution with ¢; = 0 and obtain the system in ¢, = ¢} and
by with the following solutions:

. 1125(44/35(2048\2—1280)\+387)— 1680A+525)
¢ = 167552 ,

b — (10944)\—3420) 4 /35(2048)\2— 1280\ +387)— 4403456 \2+2752160A— 789065
2 - = 117956608
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or

5 1125(—4/35(2048X°— 1280\ +387)—1680A+525)
G = 167552 ,

b — (10944)\—3420)  /35(2048)\2— 1280\ +387)— 4403456 \>+2752160\— 789065
2 = 117956608

We obtain new constant of integration as, but we must fix ¢;, so number of
constants of integration is equal to 2. It is easy to verify that b4 is an arbitrary
parameter, because the corresponding system is equivalent to one linear equa-
tion. So, using Painlevé test, we obtain an asymptotic solution which depends
on three parameters, namely %, as and by.

Now asymptotic solutions can be obtained with arbitrary accuracy. For giv-
en A one has to choose ¢; as one of the roots of system (12). After this the
coefficients a; and b; can be found automatically with the help of some com-
puter algebra system.

For example, if A = %, then (12) has the following solutions:

. 625 1819 . 8125 8700683
CL=—=, by=— : G=——=== b=——"""F——".
128 663552 23936 1364926464
Taking into account, that system (2) is invariant to change z to —z, we
obtain four types of formal solutions:

5) 25 5v/2 5275
a:—\/_{it + = f+ t—l—a2t2...},

4 96v/2 16 663552v/2
15 ., 5V2 115»/‘ 1819
= — — ¢ t 13.1
Y T 2304+ 13824 663552 T (13.1)

741719 5)
. f+ f B bt
1528823808 12

5 25i 5iv/2  5275i
x\/{ iz, i1 SiV2 ! t1+a2t2+...},

4 962 9216  663552+/2
15 5v/2 205 1152 1819
y=——t%— ft‘l — — ft _ 2 _ (13.2)
8 32 2304 13824 663552

417192 v/ 2
_ 7 79f+52fa2 t3+b4t4—|—...;
1528823808 12
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5V/‘ / 5¢\/2431
17952

374
38645\/_ 13 7028575rv?43 13, o }
_ Lo/ 13, o ,
374

574464 V374 23203749888

15t_2 52’\/4862t_1 69335  37745:1/4862 8700683 2

V=73 T Th0sa T 130848 483411456 | 1364926464°
- (1148020763@VT§\/§7Z 5Vf' 13 ) Byt
3332429743915008 12 V" 374
v Vi 5iv2 13, 25v2d3l 25+/2431 , 13
4 374 17952 374
| 3864512,/ 13 7028575v/2431 , B e }
574464 374 23203749388 374 ’
15 _, 5iV/4862 _, 69335  37745i/4862 8700683
Y=gt T Thosa ' T 130848 T 4s3411456 | 1364926464
(1148020763\/v€n7 PR ) Byt
3332429743915008 12 374
It is easy to verify that if
21497+v/2 858455
©=" owersas 4 T T 030487488

then series (13.1) are the Laurent series of (8.1). Also if

21497i+/2 858455
ag = — ————— and b4:_ )
42467328 12039487488

then series (13.2) are the Laurent series of (8.2).

5.2 Convergence of the obtained series

When an asymptotic series is obtained the question about its convergence arises.
It is known that a domain of Laurent series convergence is a ring. Let us
find conditions, at which the obtained series converge in the following ring:
0 < |t| £ 1 — e, where € is any positive number.
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0.9]
1
The sum of a geometrical progression S = Zt” = 13 is finite if
n=0
|t} < 1 — ¢, hence, our series converge in the above-mentioned ring, if 3N
such that Yn > N |a,| <1 and |b,| < 1.

Let |a,| < 1 and |b,]| < 1forall —1 < n <k, then from (11), we obtain:

2k + 2+ |A| + 2|¢] 21(k + 2)
k2 —4] (k2 — k- 12)°
[t is easy to see that there exists such N, that, if |a,| < 1 and |b,| < 1 for
—1 < n < N, then |a,| < 1and |b,| < 1for =1 < n < oco. N is a maximum
from 8 and 1+ /|A| + 2|¢;| + 7.
For example, if A = %, then for any possible value of ¢;, we obtain N = 8.
[t is easy to verify that if |ag| < 1 and |by| < 1, then |a,| < 1 and |b,| < 1 for
—1 < n <8, and, hence, for an arbitrary n. Thus our Laurent series converge
in the ring 0 < |t| < 1 — . Numerical analysis shows [63] that these series

ax| < |br| < - (14)

can also converge at absolute values of parameters more than unit. For other
values of A\ the convergence can be considered analogously.

6 GENERALIZATION OF SOLUTIONS IN TERMS
OF THE WEIERSTRASS ELLIPTIC FUNCTIONS

Let us consider solutions (4). The values of parameters (4a) correspond to
z(t) = 0. Solutions (4b) correspond to the Case I (see Table) and z(t) can be

expressed in terms of the Weierstrass elliptic functions. For some values of C'

9

these two-parameter solutions can be generalized. For example, it C' = — ¢,

then some resonaces are half-integer. Substituting
0 o0
xr = Z dktk/2 and y = Z bktk/2
k=—4 k=—4

in (2), we obtain that &, and b, have to satisfy the following system:

( n—1
_2)— 24 _ .
) A 2 by = iy 2 Y b,
k=1
n(n —2) —27- - o g 271
2a_4a, + 1 by = — bp_y — kzg Aplp—f—4 — 3 kzg bibp—1—4,
\ =— —_

14



where a_4 = + 3£ and b_ 4= —3.

At any A we obtain three-parameter solutions as formal Puiseux series. For

example, if A =1 (and a_4 = \‘;) the solution is the following (¢y = 0):

_ 3742 3/2 VT 42 15/7 7/2
T _2\/_t +8\/_+\/_D1t/+160\/_t 224th/

V7 4 467V7T 12 54 11577 11/2 V7 6
2\/_Dt 8624\/_Dt 430080\/_Dt / 115200\/§t + .

(15)
— -2 1 3/2 142 15 7/2
y = =3t 2-14D32 - L2 - LD+
4 2 5 1157 11/2 6
+ DQt 616D t 245760D t / 57600t +-

Using numerical calculations it is easy to show that if | D] < 1 and |Ds| < 1
then |ai| < 1 and \I;k| < 1, for —3 < k < 50, except only ag = \/ng. It is

sufficient to prove that |ag| < 1 and |by| < 1 for all & > 50 and, hence, our
series converge in the ring 0 < |t| < 1 —e. If Dy = 0 then y satisfies (4) with
4 ~ 16

N:—— :—1 = d D_—H 4b/
A 3 B : C=0 an B (40"

and solution can be presented in terms of the Weierstrass elliptic functions.

7 CONCLUSION

Using the Painlevé analysis one can not only find integrable cases of dynamical
systems, but also construct special solutions in nonintegrable cases.

We have found the special solutions of the Hénon—Heiles system with C' =
— % as formal Laurent series, depending on three parameters. For some values
of two parameters the obtained solutions coincide with the known exact solu-
tions. At C' = — = two parameter solutions in terms of the Weierstrass elliptic
functions have been generalized to three-parameter ones. New solutions found
as formal Puiseux series. For some values of A the analysis of convergence of the
obtained series has been made and it has been proved, that they have nonzero
domain of convergence. Similar analysis can been made for any value of A.

With the help of the Painlevé test particular asymptotic solutions as Laurent
or Puiseux series can be found for the Hénon—Heiles system with some other
values of C' and \. Just at these values of parameters the probability of finding

of new exact solutions similar to the solutions found in [60] is great.
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