
S.Yu.Vernov

CONSTRUCTION OF SOLUTIONS FOR

THE GENERALIZED H�ENON�HEILES

SYSTEM WITH THE HELP OF

THE PAINLEV�E TEST

Preprint NPI MSU 2002�21/705



M.V. LOMONOSOV MOSCOW STATE UNIVERSITY

D.V. SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS

S.Yu.Vernov

CONSTRUCTION OF SOLUTIONS FOR

THE GENERALIZED H�ENON�HEILES

SYSTEM WITH THE HELP OF

THE PAINLEV�E TEST

Preprint NPI MSU 2002�21/705



Vernov S.Yu.

e-mail: svernov@theory.sinp.msu.ru

CONSTRUCTION OF SOLUTIONS FOR THE GENERALIZED
H�ENON�HEILES SYSTEM WITH THE HELP OF THE

PAINLEV�E TEST

Preprint NPI MSU 2002�21/705

Abstract

The H�enon�Heiles system in the general form has been considered. In a nonintegrable case
with the help of the Painlev�e test new solutions have been found as formal Laurent or
Puiseux series, depending on three parameters. One of parameters determines a location of
the singularity point, other parameters determine coefficients of series. It has been proved,
that if absolute values of these two parameters are less or equal to unit, then obtained series
converge in some ring. For some values of these parameters the obtained Laurent series
coincide with the Laurent series of the known exact solutions.

Keywords: nonintegrable systems, the singularity analysis, à polynomial potential, the Lau-
rent series, the Puiseux series, elliptic functions.

Âåðíîâ Ñ.Þ.

ÏÎÑÒÐÎÅÍÈÅ ÐÅØÅÍÈÉ ÎÁÎÁÙ�ÅÍÍÎÉ ÑÈÑÒÅÌÛ
ÕÅÍÎÍÀ�ÕÅÉËÅÑÀ Ñ ÏÎÌÎÙÜÞ ÒÅÑÒÀ ÏÅÍËÅÂÅ

Ïðåïðèíò ÍÈÈßÔ ÌÃÓ 2002�21/705

Àííîòàöèÿ

Ðàññìàòðèâàåòñÿ ñèñòåìà Õåíîíà�Õåéëåñà â îáùåì âèäå. Â íåèíòåãðèðóåìîì ñëó÷àå ñ
ïîìîùüþ òåñòà Ïåíëåâå íàéäåíû ðåøåíèÿ â âèäå ôîðìàëüíûõ ðÿäîâ Ëîðàíà èëè Ïþèç�å,
çàâèñÿùèõ îò òð�åõ ïàðàìåòðîâ. Îäèí èç ïàðàìåòðîâ îïðåäåëÿåò ïîëîæåíèå îñîáîé
òî÷êè, à äâà äðóãèõ � êîýôôèöèåíòû ðÿäîâ. Äîêàçàíî, ÷òî åñëè ýòè äâà ïàðàìåòðà
ïî ìîäóëþ ìåíüøå èëè ðàâíû åäèíèöå, òî ðÿäû ñõîäÿòñÿ â íåêîòîðîì êîëüöå. Ïðè
îïðåäåë�åííûõ çíà÷åíèÿõ ýòèõ ïàðàìåòðîâ ïîëó÷àþòñÿ ðÿäû Ëîðàíà èçâåñòíûõ òî÷íûõ
ðåøåíèé.

c
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c
 SINP MSU, 2002



1 THE PAINLEV�E PROPERTY AND INTEGRABI-

LITY

A Hamiltonian system in a 2s�dimensional phase space is called completely
integrable (Liouville integrable) if it possesses s independent integrals which
commute with respect to the associated Poisson bracket. When this is the case,
the equations of motion are (in principal, at least) separable and solutions can
be obtained by the method of quadratures.

When we study some mechanical or field theory problem, we imply that time
and space coordinates are real, whereas the integrability of motion equations
is connected with the behavior of their solutions as functions of complex time
and (in the case of the field theory) complex spatial coordinates.

S.V. Kovalevskaya was the first, who proposed [1] to consider time as a com-
plex variable and to demand that solutions of the motion equations have to be
single-valued, meromorphic functions on the whole complex (time) plane. This
idea gave a remarkable result: S.V. Kovalevskaya discovered a new integrable
case (nowadays known as the Kovalevskaya's case) for the motion of a heavy
rigid body about a fixed point [1] (see also [2]). The work of S.V. Kovalevskaya
has shown the importance of application of the analytical theory of differen-
tial equations to physical problems. The essential stage of development of this
theory was a classification of ordinary differential equations (ODE's) in order
of types of singularities of their solutions. This classification has been made by
P. Painlev�e.

Let us formulate the Painlev�e property for ODE's. Solutions of a system
of ODE's are regarded as analytic functions, may be with isolated singular
points [3, 4]. A singular point of a solution is said critical (as opposed to
noncritical) if the solution is multivalued (single-valued) in its neighborhood
and movable if its location depends on initial conditions1.

Definition. A system of ODE's has the Painlev�e property if its general
solution has no movable critical singular point [5, 6].

An arbitrary solution of such system is single-valued in the neighborhood

1Solutions of a system with a time-independed Hamiltonian can have only
movable singularities.
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of its singular point t0 and can be expressed as a Laurent series with a finite
number of terms with negative powers of t�t0. If a system has not the Painlev�e
property, but, after some change of variables, the obtained system possesses this
property, then the initial system is said to have the weak Painlev�e property.

Investigations of many dynamical systems, Hamiltonian [7�9] or dissipative
(for example, the Lorenz systems [9�12]), show, that a system is completely inte-
grable only for such values of parameters, at which it has the Painlev�e property
(or the weak Painlev�e property). Arguments, which clarify the connection be-
tween the Painlev�e analysis and the existence of motion integrals, are presented
in [13, 14]. If the system misses the Painlev�e property (has complex or irrational
"resonances"), then the system cannot be "algebraically integrable-[15] (see al-
so [16] and references therein). At the same time the integrability of an arbitrary
system with the Painlev�e property has yet to be proved. There is not an algo-
rithm for construction of the additional integral by the Painlev�e analysis. It is
easy to give an example of an integrable system without the Painlev�e proper-
ty [17]: H = 1

2
p2 + f(x), where f(x) is a polynomial which power is not lower

than five. The given system is trivially integrable, but its general solution is
not a meromorphic function.

The Painlev�e test is any algorithm designed to determine necessary condi-
tions for a differential equation to have the Painlev�e property. The original
algorithm, developed by P. Painlev�e and used by him to find all the second or-
der ODE's with Painlev�e property [6], is known as the �-method. The method of
S.V. Kovalevskaya is not as general as the ��method, but much more simple2.

In 1980, motivated by the work of S.V. Kovalevskaya [1], M.J. Ablowitz,
A. Ramani and H. Segur [19] developed a new algorithm of the Painlev�e test for
ODE's. The remarkable property of this test is that it can be checked in a finite
number of steps. They also were the first to point out the connection between
the nonlinear partial differential equations (PDE's), which are soluble by the
inverse scattering transform method, and ODE's with the Painlev�e property.
Subsequently the Painlev�e property for PDE was defined and the corresponding
Painlev�e test (the WTC procedure) was constructed [20, 21] (see also [18, 22�
25]). With the help of this test it has been found, that all PDE's, which are
solvable by the inverse scattering transforms, have the Painlev�e property, may
be, after some change of variables. For many integrable PDE's, for example,
the Korteweg�de-Vries equation [9], the B�acklund transformations and the Lax

2Different variants of the Painlev�e test are compared in [18, R. Conte paper]
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representations result from the WTC procedure [21, 26]. Also, special solutions
for certain nonintegrable PDE's were constructed using this algorithm [27, 28].

The algorithm for finding special solutions for ODE system in the form of a
finite expansion in powers of unknown function '(t� t0) has been constructed
in [29]. The function '(t � t0) and coefficients have to satisfy some system of
ODE, often more simple than an initial one. This method has been used [30]
to construct exact solutions for certain nonintegrable systems of ODE's.

The aim of this paper is to find new special solutions for the generalized
H�enon�Heiles system using the Painlev�e test. In distinction to [30] we obtain
solutions as formal Laurent or Puiseux series and find domains of their conver-
gence.

2 THE H�ENON�HEILES HAMILTONIAN

Let us consider the motion of a star in an axial-symmetric and time-independent
potential. The motion equations admit two well-known integrals (energy and
angular momentum) and would be solved by the method of quadratures if the
third integral of motion is known. Due to the symmetry of the potential the
considered system is equivalent to two-dimensional one. However, for many
polynomial potentials the obtained system has not the second integral as a
polynomial function.

In the 1960s, asymptotic methods [31, 32] have been developed to show ei-
ther existence or absence of the third integral for some polynomial potentials.
To answer the question about the existence of the third integral H�enon and
Heiles [33] considered the behavior of numerically integrated trajectories. Em-
phasizing that their choice of potential does not proceed from experimental
data, H�enon and Heiles have proposed the following Hamiltonian:

H =
1

2
(x2t + y2t + x2 + y2) + x2y � 1

3
y3; (1)

because: on the one hand, it is analytically simple; this makes the numerical
computations of trajectories easy; on the other hand, it is sufficiently compli-
cated to give trajectories which are far from trivial. Indeed, for low energies the
H�enon�Heiles system appears to be integrable, in so much as trajectories (nu-
merically integrated) always lay on well-defined two-dimensional surfaces. On
the other hand, for high energies many of these integral surfaces are destroyed,
it points on absence of the third integral.
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Subsequent numerical investigations [34, 35] show, that in the complex
t-plane singular points of solutions of the motion equations group in self-similar
spirals. It turns out extremely complicated distributions of singularities, form-
ing a boundary, across which the solutions can not be analytically continued.

The generalized H�enon�Heiles system is described by the Hamiltonian:

H =
1

2
(x2t + y2t + �x2 + y2) + x2y � C

3
y3 (10)

and the corresponding system of the motion equations:(
xtt = ��x� 2xy;

ytt = �y � x2 + Cy2;
(2)

where xtt � d2x
dt2 and ytt � d2y

dt2 , � and C are numerical parameters.
Due to the Painlev�e analysis the following integrable cases of (2) have been

found:

(i) C = �1; � = 1;
(ii) C = �6; � is an arbitrary number;
(iii) C = �16; � = 1

16:

In contradiction to the case (i) the cases (ii) and (iii) are nontrivial, so
the integrability of these cases had to be proved additionally. In the 1980's
the required second integrals were constructed [36�39]. For integrable cases
of the H�enon�Heiles system the B�acklund transformations [29] and the Lax
representations [22, 23, 40] have been found. In [41] the connection between
the three integrable cases of the H�enon�Heiles system and some integrable
partial differential equations was shown.

The H�enon�Heiles system is a model widely used in physics, in particular,
in gravitation [42�44] and plasma theory [45]. The models, described by the
Hamiltonian (10) with some additional nonpolynomial terms, are actively stud-
ied [46�48] as well.

3 NONINTEGRABLE CASES

The general solutions of the H�enon�Heiles system are known only in integrable
cases [48], in other cases search of new (exact or asymptotic) solutions is an
actual problem.
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The procedure for transformation the Hamiltonian to a normal form and for
construction the second independent integral in the form of formal power series
in the phase variables x, xt, y and yt (Gustavson integral) has been realized for
the H�enon�Heiles system both in the original (� = 1, C = 1) [32] (see also [49])
and in the general forms [50, 51]. Using the Bruno algorithm [52, 53] V.F. Ed-
neral has constructed the Poincar�e�Dulac normal form and found [54, 55]
(provided that all phase variables are small) local families of periodic solutions.
Recently it has been found that a local series around the singularities in the
complex (time) plane can be transformed to some local series around the sin-
gularities at the fixed points in phase space and analyzed via normal forms
theory [56, 57].

The H�enon�Heiles system as a system of two second order ODE's is equiv-
alent to the fourth order equation3:

ytttt = (2C � 8)ytty � (4�+ 1)ytt + 2(C + 1)y2t+

+
20C

3
y3 + (4C�� 6)y2 � �y � 4H;

(3)

where H is the energy of the system.
To find a special solution of the given equation one can assume that y

satisfies some more simple equation. For example, the well-known solutions in
terms of the Weierstrass elliptic functions [58, 59] satisfy the following first-
order differential equation:

y2t = ~Ay3 + ~By2 + ~Cy + ~D; (4)

where

~A =
2

3
C; ~B = �1; ~C = 0 and ~D = 2H (4a)

or

3For given y(t) the function x2(t) is a solution of a linear equation. System
(2) is invariant to exchange x to �x.
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~A = � 4

3
;

~B =
1� (C + 2)�

C + 1
;

~C = � 3C2�2 � 3C2�+ 8C�2 � 7C�� C + 4�2 � 2�� 2

3C3 + 10C2 + 11C + 4
;

~D =
24C4H + 104C3H � 9C3�3 + 6C3�2 + 3C3�

4(3C5 + 22C4 + 60C3 + 78C2 + 49C + 12)
+

+
168C2H � 30C2�3 + 13C2�2 + 16C2�+ C2

4(3C5 + 22C4 + 60C3 + 78C2 + 49C + 12)
+

+
120CH � 28C�3 + 24C�+ 4C + 32H � 8�3 � 4�2 + 8�+ 4

4(3C5 + 22C4 + 60C3 + 78C2 + 49C + 12)
:

(4b)

~D is proportional to energy H (arbitrary parameter), therefore, solutions (4a)
and (4b) are two-parameter ones.

E.I. Timoshkova [60] generalized equation (4):

y2t = ~Ay3 + ~By2 + ~Cy + ~D + ~Gy5=2 + ~Ey3=2 (5)

and found new one-parameter sets of solutions of the H�enon�Heiles system in
nonintegrable cases (C = � 4

3 or C = � 16
5 , � is an arbitrary number).

These solutions (i.e. solutions with ~G 6= 0 or ~E 6= 0) are derived only at ~D = 0,
therefore, substitution y = %2 gives:

%2t =
1

4
( ~A%4 + ~G%3 + ~B%2 + ~E%+ ~C): (6)

The general solution of (6) has one arbitrary parameter and can be expressed
in elliptic functions.

In this paper I analyze system (2) at C = � 16
5
and � = 1

9
(the Solution 2.2

of the paper [60]). In this case equation (5) is:

y2t +
32

15
y3 +

4

9
y2 � 8ip

135
y5=2 = 0 (7)

and, depending on a choice of a sign before the last term, we obtain either (in
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case of sign +):

y = � 5

3
�
1� 3 sin

�
t�t0
3

��2 and x2 =
25(1� sin

�
t�t0
3

�
)

9
�
1� 3 sin

�
t�t0
3

��3 ; (8:1)

or (in case of sign �):

y = � 5

3
�
1 + 3 sin

�
t�t0
3

��2 and x2 =
25(1 + sin

�
t�t0
3

�
)

9
�
1 + 3 sin

�
t�t0
3

��3 : (8:2)

4 RESULTS OF THE PAINLEV�E TEST FOR THE

H�ENON�HEILES SYSTEM

The Ablowitz�Ramani�Segur algorithm of the Painlev�e test appears very useful
to find asymptotic solutions as a formal Laurent series.

We assume that the behavior of solutions in a sufficiently small neighborhood
of the singularity is algebraic, it means that x and y tend to infinity as some
powers of t� t0:

x = a�(t� t0)
� and y = b�(t� t0)

�; (9)

where �, �, a� and b� are some constants. We assume that real parts of � and
� are less then zero, and, of course, a� 6= 0 and b� 6= 0.

If � and � are integer numbers, then substituting

x = a�(t� t0)
� +

NmaxX
j=1

aj+�(t� t0)
j+�; (10:1)

y = b�(t� t0)
� +

NmaxX
j=1

bj+�(t� t0)
j+� (10:2)

one can transform the ODE system into a set of linear algebraic systems in
coefficients ak and bk. In the general case one can obtain the exact solutions (in
the form of formal Laurent series) only if one solves infinity number of systems
(Nmax = 1). On the other hand, if one solves a finite number of systems one
obtains asymptotic solutions. With the help of some computer algebra system,
for example, the system REDUCE [61, 62], these systems can be solved step
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by step and asymptotic solutions can be automatically found with any accu-
racy. But previously one has to determine values of constants �, �, a� and b�
and to analyze systems with zero determinants. Such systems correspond to
new arbitrary constants or have no solutions. Powers at which new arbitrary
constants enter are called resonances. The Painlev�e test gives all information
about possible dominant behaviors and resonances (see, for example, [9]). More-
over, the results of the Painlev�e analysis point to cases, in which it is useful to
include into expansion terms with fractional powers of t� t0.

For the generalized H�enon-Heiles system there exist two possible dominant
behaviors and resonance structures [9, 35]:

Case 1: Case 2: (� < <e(�) < 0)

� = �2, � =
1�
p

1�48=C
2 ,

� = �2, � = �2,
a� = �3p2 + C, a� = c1 (an arbitrary number),

b� = �3, b� = 6
C ,

r = �1; 6; 5
2 �

p
1�24(1+C)

2 . r = �1; 0; 6; �p1� 48=C.

In the Table the values of r denote resonances: r = �1 corresponds to arbi-
trary parameter t0; r = 0 (in the Case 2) corresponds to arbitrary parameter
c1. Other values of r determine powers of t, to be exact, t

�+r for x and t�+r for
y, at which new arbitrary parameters enter (as solutions of systems with zero
determinants).

For integrability of system (2) all values of � and r have to be integer (or
rational) and all systems with zero determinants have to have solutions at all
values of included in them free parameters. It is possible only in the cases (i)
� (iii).

At C = �2 (in the Case 1) a� = 0. It is the consequence of the fact that,
contrary to our assumption, the behaviour of the solution in the neighborhood of
a singular point is not algebraic, because its dominant term includes logarithm.

Those values of C, at which � and r are integer (or rational) numbers either
only in the Case 1 or only in the Case 2, are of interest for search of special
solutions.
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5 NEW SOLUTIONS

5.1 Finding of solutions in the form of formal Laurent series

Let us consider the H�enon�Heiles system with C = � 16
5
. In the Case 1 some

values of r are not rational, so it is a nonintegrable system. To find special
asymptotic solutions let us consider the Case 2. In this case � = � 3

2
and

r = �1; 0; 4; 6, hence, in the neighborhood of the singular point t0 we have
to seek x in such form that x2 can be expand into Laurent series, beginning
from (t� t0)

�3. Let t0 = 0, substituting

x =
p
t

 
c1t

�2 +
1X

j=�1
ajt

j

!
and y = � 15

8
t�2 +

1X
j=�1

bjt
j

in (2), we obtain the following sequence of linear system in ak and bk:8>>>>><
>>>>>:

(k2 � 4)ak + 2c1bk = ��ak�2 � 2
k�1X
j=�1

ajbk�j�2

((k � 1)k � 12)bk = � bk�2 �
k�1X
j=�2

ajak�j�3 � 16

5

k�1X
j=�1

bjbk�j�2:

(11)

If k = 2 or k = 4, then the determinant of (11) is equal to zero. To determine
a2 and b2 we have the following system:8>>>><

>>>>:

c1(557056c
8
1 + (15552000�� 4860000)c41 + 864000000b2 +

+ 108000000�2� 67500000�+ 10546875) = 0;

818176c81 + (15660000�� 4893750)c41�
� 810000000b2� 6328125 = 0:

(12)

As one can see this system does not include terms, which are proportional
to a2, hence, a2 is an arbitrary parameter (a constant of integration).

We discard the solution with c1 = 0 and obtain the system in ~c1 � c41 and
b2 with the following solutions:

~c1 =
1125(4

p
35(2048�2�1280�+387)�1680�+525)

167552
;

b2 = � (10944��3420)
p

35(2048�2�1280�+387)�4403456�2+2752160��789065
117956608

11



or

~c1 =
1125(�4

p
35(2048�2�1280�+387)�1680�+525)

167552 ;

b2 =
(10944��3420)

p
35(2048�2�1280�+387)�4403456�2+2752160��789065

117956608
:

We obtain new constant of integration a2, but we must fix c1, so number of
constants of integration is equal to 2. It is easy to verify that b4 is an arbitrary
parameter, because the corresponding system is equivalent to one linear equa-
tion. So, using Painlev�e test, we obtain an asymptotic solution which depends
on three parameters, namely t0, a2 and b4.

Now asymptotic solutions can be obtained with arbitrary accuracy. For giv-
en � one has to choose c1 as one of the roots of system (12). After this the
coefficients aj and bj can be found automatically with the help of some com-
puter algebra system.

For example, if � = 1
9
, then (12) has the following solutions:�

~c1 =
625

128
; b2 = � 1819

663552

�
;

�
~c1 = � 8125

23936
; b2 = � 8700683

1364926464

�
:

Taking into account, that system (2) is invariant to change x to �x, we
obtain four types of formal solutions:

x =
p
t

(
5 4
p
2

4
t�2 +

25

96 4
p
2
t�1 � 5 4

p
2

16
+

5275

663552 4
p
2
t + a2t

2 : : :

)
;

y = � 15

8
t�2 +

5
p
2

32
t�1 � 205

2304
+

115
p
2

13824
t� 1819

663552
t2 +

+

 
741719

p
2

1528823808
+

5 4
p
2

12
a2

!
t3 + b4t

4 + : : : ;

(13:1)

x =
p
t

(
5i 4
p
2

4
t�2 � 25i

96 4
p
2
t�1 � 5i 4

p
2

9216
� 5275i

663552 4
p
2
t1 + a2t

2 + : : :

)
;

y = � 15

8
t�2 � 5

p
2

32
t�1 � 205

2304
� 115

p
2

13824
t� 1819

663552
t2 �

�
 

741719
p
2

1528823808
+

5i 4
p
2

12
a2

!
t3 + b4t

4 + : : : ;

(13:2)
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x =
p
t

(
5
p
2

4
4

r
� 13

374
t�2 +

25i
p
2431

17952
4

r
� 13

374
t�1 �

� 38645
p
2

574464
4

r
� 13

374
� 7028575i

p
2431

23203749888
4

r
� 13

374
t+ a2t

2 + : : :

)
;

y = � 15

8
t�2 +

5i
p
4862

5984
t�1 � 69335

430848
� 37745i

p
4862

483411456
t� 8700683

1364926464
t2 �

�
 
1148020763i

p
13
p
374

3332429743915008
� 5

p
2

12
a2

4

r
� 13

374

!
t3 + b4t

4 + : : : ;

x =
p
t

(
5i
p
2

4
4

r
� 13

374
t�2 +

25
p
2431

17952
4

r
� 13

374
t�1 �

� 38645i
p
2

574464
4

r
� 13

374
� 7028575

p
2431

23203749888
4

r
� 13

374
t+ a2t

2 + : : :

)
;

y = � 15

8
t�2 � 5i

p
4862

5984
t�1 � 69335

430848
+

37745i
p
4862

483411456
t� 8700683

1364926464
t2 �

�
 
1148020763

p
13
p
374

3332429743915008
+

5i
p
2

12
a2

4

r
� 13

374

!
t3 + b4t

4 + : : : :

It is easy to verify that if

a2 = � 21497 4
p
2

42467328
and b4 = � 858455

12039487488
;

then series (13:1) are the Laurent series of (8:1). Also if

a2 = � 21497i 4
p
2

42467328
and b4 = � 858455

12039487488
;

then series (13:2) are the Laurent series of (8:2).

5.2 Convergence of the obtained series

When an asymptotic series is obtained the question about its convergence arises.
It is known that a domain of Laurent series convergence is a ring. Let us
find conditions, at which the obtained series converge in the following ring:
0 < jtj 6 1� ", where " is any positive number.
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The sum of a geometrical progression S =
1X
n=0

tn =
1

1� t
is finite if

jtj 6 1 � ", hence, our series converge in the above-mentioned ring, if 9N
such that 8n > N janj 6 1 and jbnj 6 1.

Let janj 6 1 and jbnj 6 1 for all �1 6 n < k, then from (11), we obtain:

jakj 6 2k + 2 + j�j + 2jc1j
jk2 � 4j ; jbkj 6 21(k + 2)

5(k2 � k � 12)
: (14)

It is easy to see that there exists such N , that, if janj 6 1 and jbnj 6 1 for
�1 6 n 6 N , then janj 6 1 and jbnj 6 1 for �1 6 n < 1. N is a maximum
from 8 and 1 +

pj�j + 2jc1j+ 7.
For example, if � = 1

9
, then for any possible value of c1, we obtain N = 8.

It is easy to verify that if ja2j 6 1 and jb4j 6 1, then janj 6 1 and jbnj 6 1 for
�1 6 n 6 8, and, hence, for an arbitrary n. Thus our Laurent series converge
in the ring 0 < jtj 6 1 � ". Numerical analysis shows [63] that these series
can also converge at absolute values of parameters more than unit. For other
values of � the convergence can be considered analogously.

6 GENERALIZATION OF SOLUTIONS IN TERMS

OF THE WEIERSTRASS ELLIPTIC FUNCTIONS

Let us consider solutions (4). The values of parameters (4a) correspond to
x(t) � 0. Solutions (4b) correspond to the Case 1 (see Table) and x(t) can be
expressed in terms of the Weierstrass elliptic functions. For some values of C
these two-parameter solutions can be generalized. For example, if C = � 9

8
,

then some resonaces are half-integer. Substituting

x =
1X

k=�4
~akt

k=2 and y =
1X

k=�4

~bkt
k=2

in (2), we obtain that ~an and ~bn have to satisfy the following system:8>>>>><
>>>>>:

n(n� 2)� 24

4
~an + 2~a�4~bn = ��~an�4 � 2

n�1X
k=�1

~ak~bn�k�4;

2~a�4~an +
n(n� 2)� 27

4
~bn = � ~bn�4 �

n�1X
k=�3

~ak~an�k�4 � 9

8

n�1X
k=�3

~bk~bn�k�4;

14



where ~a�4 = � 3
p
7

2
p
2
and ~b�4 = �3.

At any � we obtain three-parameter solutions as formal Puiseux series. For
example, if � = 1 (and ~a�4 = 3

p
7

2
p
2
) the solution is the following (t0 = 0):

x = 3
p
7

2
p
2
t�2 + 7

8
p
2
+ 4p

14
D1t

3=2 +
p
7

160
p
2
t2 � 15

p
7

224
p
2
D1t

7=2 �
�

p
7

2
p
2
D2t

4 � 467
p
7

8624
p
2
D2

1t
5 + 1157

p
7

430080
p
2
D1t

11=2 +
p
7

115200
p
2
t6 + : : : ;

y = �3t�2 � 1
4 +D1t

3=2 � 1
80t

2 � 15
128D1t

7=2 +

+ D2t
4 � 79

616
D2

1t
5 + 1157

245760
D1t

11=2 1
57600

t6 + : : : :

(15)

Using numerical calculations it is easy to show that if jD1j < 1 and jD2j < 1

then j~akj < 1 and j~bkj < 1, for �3 6 k 6 50, except only ~a3 =
q

8
7
D1. It is

sufficient to prove that j~akj < 1 and j~bkj < 1 for all k > 50 and, hence, our
series converge in the ring 0 < jtj 6 1� ". If D1 = 0 then y satisfies (4) with

~A = � 4

3
; ~B = �1; ~C = 0 and ~D =

16

15
H; (4b0)

and solution can be presented in terms of the Weierstrass elliptic functions.

7 CONCLUSION

Using the Painlev�e analysis one can not only find integrable cases of dynamical
systems, but also construct special solutions in nonintegrable cases.

We have found the special solutions of the H�enon�Heiles system with C =
� 16

5 as formal Laurent series, depending on three parameters. For some values
of two parameters the obtained solutions coincide with the known exact solu-
tions. At C = � 9

8 two-parameter solutions in terms of the Weierstrass elliptic
functions have been generalized to three-parameter ones. New solutions found
as formal Puiseux series. For some values of � the analysis of convergence of the
obtained series has been made and it has been proved, that they have nonzero
domain of convergence. Similar analysis can been made for any value of �.

With the help of the Painlev�e test particular asymptotic solutions as Laurent
or Puiseux series can be found for the H�enon�Heiles system with some other
values of C and �. Just at these values of parameters the probability of finding
of new exact solutions similar to the solutions found in [60] is great.
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