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Abstract

We analyse the physical boundary conditions at infinity for metric fluctuations
and gauge functions in the RS2 model with matter on the brane. We argue that
due to these boundary conditions the radion field cannot be gauged out in this
case. Thus, it represents a physical degree of freedom of the model.
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1 Introduction

The RS2 model [1] is based on the solution for the background metric, which was
obtained from the solution for the background metric of the Randall-Sundrum
model with two branes [2] by pushing the negative tension brane to infini-
ty. The model describes gravity in a five-dimensional space-time FE with one
brane embedded into it. We dencte the coordinates in E by {z} = {z#, 2},
M=0,1,2,3,4, 4 = 0,1,2,3, the coordinate * = ¢ parameterizing the fifth
dimension, which is infinite. The brane is located at ¥ = 0, and all the fields
possess a symmetry under the reflection y < —y, which is inherited from the
RS1 model. Explicitly, it reads

g!w(:c, _y) = g'_;w(‘l', y):« (1}
91&4(33: _y) — _g}ﬂ(m: y):
gaa(z, —y) = gaa(z,9).

The meaning of this symmetry can be easily understood even without referring
to the RS1 model: if matter is localized on the brane, all the physical fields
should possess a symmetry under the reflection in the brane.

It is a common knowledge that among the degrees of freedom of the RS1
model there is a massless scalar field, called the radion and describing the os-
cillations of the branes with respect to each other. At the first glance, it seems
to be very likely that this degree of freedom should drop from the model, if
one brane is pushed to infinity. In fact, this assumption was made in papers
[1, 6, 7], where it was noted that the 44-component of the metric fluctuations,
which corresponds to the scalar mode, could be gauged out. However, in this
gauge the brane is located not at 4y = 0, but at y = £(2). Obviously, this "bent-
brane™formulation destroys the reflection symmetry (1), which makes the ap-
proach based on this gauge inconsistent; this fact was noted in [8]. In paper [5]
it was observed that gauging out the radion field in the straight brane formu-
lation with matter on the brane leads to unphysical solutions, which diverge
at infinity. Thus, gauging out the radion field resulted in some discrepancies,
and it looks as if this field were of particular importance in the RS2 model.
In the present paper we are going to study the role of the radion in the RS2
model more thoroughly. We begin with briefly discussing the main features of
the RS2 model.



The action of the model is

S — Sg + Sbrcme; (2}
where S, and Sypan. are given by
1

S, = < f R— A) /=g dzdy, 3

o = = | (R-N)v=gdiudy ®)

Shrane = V/J;\/?ﬁﬁ(y)fmdy.

Here §,, is the induced metric on the brane and V is the brane tension. We
also note that the signature of the metric gasx is chosen to be (—, 4+, +, +, +).
The Randall-Sundrum solution for the metric is given by

ds® = guwdaMda™ = B%(y}”?;wdm’udmv + dy?, (4)

where 7, is the Minkowski metric and the function o(y) = —k|y|. The param-
eter k is positive and has the dimension of mass; the parameters A and V are
related to it as follows:

3k
4?ré.

We see that the brane has a positive energy density. The function o has the
properties

A=—-12k%, V=-—

. O%a
010 = —k sign(y), o —2kd(y). (5)
Here and in the sequel J4 = %.

We denote k£ = v 16n(G, where (G is the five-dimensional gravitational con-
stant, and parameterize the metric gyy as

gMN = YMN + Rhuy, (6)

harw being the metric fluctuations. Substituting this parameterization into (2)
and retaining the terms of the zeroth order in k, we can get the second variation
action of this model. In [3] the second variation action for the RS1 model was
obtained, and we can apply this result to the RS2 model just by changing the
definition of a(y) and of its derivatives.



The action is invariant under the gauge transformations

un(@,y) = hun(e,y) — (Vaudn(z,y) + Vatu(z, y)), (7}

where Vs is the covariant derivative with respect to the background metric
~un, and the functions ¥ (2, y) satisfy the symmetry conditions

‘E#(ma _y) — f-"(;}j’y) (8)
54 (".L‘, _y) — _54 (m:y)

Equations (7} can be rewritten in a more useful component form as follows:

By (2) = Ty (2) — (s + Ol + 27 Ba0ts) (9)
hia(z) = hpa(z) — (0u8s + Ouéy — 20408,) (10)
1 () = haa(2) — 20:8,. (11)

2 Gauge conditions and equations of motion for
linearized gravity

Now let us discuss the gauge conditions and equations of motion for linearized
gravity in the presence of matter on the brane. The interaction with matter on
the brane has the standard form

A

K

> f R (x, 0, (2)da, (12)
brane

t,.(2) denoting the energy-momentum tensor of the matter.

First, we would like to emphasize that in general all fluctuations of metric
must satisfy the physical boundary conditions at y = +oo0, 2* =& +oo (i =
1,2,3), i.e. vanish at spatial infinity. This is a reasonable assumption - for
example, the hyg-component, is associated with Newton’s potential, which must
vanish at infinity (for the matter, which is localized in some finite domain).
Below we will show that the fields of certain exact solutions (for example, with
point-like matter sources) do satisfy these boundary conditions.

Obviously, the gauge functions £ (z, %) must be finite everywhere in E.
This means that

2a v
f,u =€ n;wf ‘y—»:l:oo — 0.
The situation with &; is more complicated, since & = gué* = £*. Let us consider

equation (10}. It follows from this equation that if & does not depend on four-
dimensional coordinates 2, we can satisfy the physical boundary condition for
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the field h,4 without requiring & to vanish at ¢ — =+oco. But in this case the
last term in the r.h.s. of (9) does not satisfy the physical boundary condition
for the field h,,, at 2* — =+oo. This means that & must be z-dependent and
vanish at 2* — +o0. At the same time the form of the second term in the r.h.s.
of (10} shows that £4, must vanish at 4 — +oo to satisfy the physical boundary
conditions for the field h,4. Thus, we have the following boundary conditions

for &3

fM #y—too —0 (13)

Now let us examine the equations of motion. They look as follows:
1) pr-component

1

1 = 1 1
+ 56;;8:»}1 + 56;;81#'?144 - 640(6;;}11#4 + 6vh;14) - § 84(6;;hv4 + 6vh;14) +

1 - - .
+ st 90D — 0,0% — Buhhs — 401001 — 0,0%hua + 12K%hus +

+ 30:00ha + 20°0hys +40,00%h,0) + (2K — Bovuhas) 6(y) =

k
= ~Zh(@)i),
2} pd-component,
64 (':E’,u;ifr - avhf_jw) - 36456_1;}144 -0 (a_uhvét - avhf_jpé) - U: (15)

3} 44-component,
1 - .
5(5“’6":‘&!‘9 — 3,0%h) — %64064,’1 + 6k%hss + 30100 hyy = 0, (16}

where h = Y Py

In what follows, we will also use an auxiliary equation, which is obtained by
multiplying the equation for 44-component by 2 and subtracting it from the
contracted equation for pr-component. This equation contains A, hys and hyg
only and has the form:

. K
Oy (32”64}1) — 40, (82834017144) - 264(6256‘”,71#4) + Ohsg = 3 tﬁ(m)ﬁ(g), (17)
where [0 = ##**d,0,. By integrating this equation in the limits (—co, o) and
using the physical boundary conditions for the fields A, b4 and Ay, we find
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that the function ¢(z), defined by

f_ " hasly) dy = o(a), (18)

[n 0]

is not, equal to zero and satisfies the equation

Op(z) = 1ty0(@) = | 1(o). (19)

k
3

Obvicusly, the admissible gauge transformations do not alter the physical

boundary conditions for the metric fluctuations, and therefore equation (19)

holds in any gauge. This is an equation for a four-dimensional scalar field,

which coincides with the equation for the radion field in the RS1 model with

matter on the positive tension brane [4].

Thus, we arrive at the corollary that the radion field cannot be gauged out in
the RS2 model, because otherwise the equations of motion for linearized gravity
become inconsistent. In other words, this means that the gauge functions &,
corresponding to the gauge hsyy = 0, do not satisfy the boundary conditions at
4 — o, which is a good check of the consistency of our approach. In fact, this
was noted in [5]. It was shown there that the solutions for the linearized gravity
in the absence of the radion are unphysical, i.e. they diverge at y = +cc.

We will use the following form of & to impose an appropriate gauge on the
field h.44:

]‘ y ! ! ]‘ y ! ! % ! !
Eu(z,y) = = f hus(z, o)y — — | Fy)dy f ha(o,y)dy,  (20)
1/, ac |, oo

where F'|, .. = 0 and
C':f Fly)dy. (21)

Note that £1 satisfies the symmetry and the boundary conditions. With the
help of (20} we can pass to the gauge, in which

hulz,y) = Fly)diz), (22)
where

o) =g [ hule, )iy (23)

and depends on 2 only. It turns out to be convenient to choose F(y) = e =
e~ 2kl Obviously, the field hys satisfies the symmetry and the physical bound-
ary conditions in this gauge. Moreover, we have no residual gauge transforma-
tions with £,. We also note that since £(z, 0) = 0, the brane remains straight in

I?’



this gauge, i.e. we do not use the bent-brane formulation [6, 7], which allegedly
destroys the structure of the model (this problem was discussed in [8]).

We would like to note that the gauge choice of the type (22) with an arbitrary
finite even function F(y) can be used it the RS1 model as well. For example, a
gauge with hy(z,y) ~ ¥ ¢(2) was used in [9].

Now let us discuss the gauge condition for the field A, = h 4. Let us take
the gauge function £,(2,¥) in the following form:

Y

Eulz,y) = ¥ f e *7A, (2", y’) dy. (24)
— i

Of course, this definition makes sense, if the field A, is such that the integral in
(24) is well convergent to provide an acceptable (~ €%} decrease of §,. One can
eagily see that due to the symmetry A,(z, —y) = —A.(z,y) (see (1})}, €.z, y)
satisfies the symmetry condition £,(2, —y) = £.(2,y). Moreover, it is easy to
see that &,(2, ¥)|y—+00 — 0, at least in the sense of the principal value of the
integral in eq. (24} (again due to the symmetry of A,,). Finally, it is not difficult
to check that the gauge transformation with £, given by (24} gauges the field
A, out.

We think that this formal argumentation can be used in favor of the pos-
sibility to make the A,-field vanish everywhere. Moreover, with a different
motivation, an expression similar to (24) was assumed to be well defined in [8].
Anyway, in all the papers concerning the RS2 model it is universally recog-
nized that the field A, can be gauged away (see, for example, [5]}. Thus, we
also adhere to this opinion. As we will see later, equations of motion can be
solved exactly in the gauge A, = 0 (see also [5]).

After this gauge fixing we are still left with residual gauge transformations
of the form

04 (e7¢,) = 0. (25)
Now we are ready to solve equations of motion in the gauge
h;ﬂ(m:y) =0, (26}

haa(z,y) = €27¢(2).



3 Solution of the equations of motion

The substitution, which allows us to solve equations of motion in the gauge
(26), has the form

1 1 .
h;w = b;w + § B%W;W‘ﬁ' - @ o 32 8;58:#‘;5- (27}

Note that if b,y |y 0o = 0, thenﬂh;w\yi_,m — 0. Substituting (27) into (15},
(16}, (17} and using the notation b = b, similar to the one utilized in (15),
(16}, we get

8.(8,b — 8°b,,) =0, (28)
(6#8"by — 8,0"b) — 36,00,b = 0, (29)
- 1 &
0s (e 04b) + - Dgd(y) = < th()ély). (30)

Integrating (30} in the limits (—oc¢, oo) and using the physical boundary con-
ditions for the field b,,, we get

kk
= —t.

O¢ (31)

This mean that )
Osb = B(z)e ™, (32}

where B(z) is some function of  only. Using the symmetry conditions (1}, we
obtain B(z) = 0.

Recall that we have at our disposal the gauge transformations satisfying
(25). With the help of these transformations, we can impose the gauge

b=b=0, (33)

where b = nb,,. It is easy to see that there remain gauge transformations
parameterized by £, = e®e,(z) with €,(z) satisfying O#e, = 0. Substituting
expression (33) into (28) and (29) we arrive at the following system of relations:

ahavbﬁv = 0, (34}
Ou(e > 9"b,,) = 0, (35)

where indices are raised with flat Minkowski metric %", The remaining gauge
transformations are sufficient to impose the condition

8¥b,,, = 0. (36}
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The conditions (33) and (36) define the gauge, which is usually called the
transverse-traceless (TT) gauge. Having imposed this gauge, we are still left
with residual gauge transformations

£, = EQJE_H(:B), Oe, =0, 8%, =0, (37)

which are important for determining the number of degrees of freedom of the
massless mode of b,,..
Substituting (27) into (14) and using (33), (36) and (31}, we get the well-

known equation

1
§ (B_QUD b.”y + 64541?_,“;) - Zkzbﬁv + Zkb_;wa(y) — (38}

1 Op 0y
= —— 5(@') [ [T 3 (n;w - !T) t] .

This equation is identical to the one obtained by Garriga and Tanaka [6]. Tt was
solved exactly, for example, in [8], and the solution for ordinary (not tachyonic)
matter on the brane locks like

1 —i ey
b}w(:r,y) = (2?()4 ./1.:2,}{]6 i b,ew(p:fy)dlip: (39}

where for p* = —p2 + 7* > 0 (which includes the static case pp = 0)

. (\/_ k|J|)
S R R I e

We note, that (40} coincides with the corresponding formula for the RS1 model,
obtained in [4], in the limit B — occ.

Thus, the exact solution for linearized gravity in our gauge is given by (27),
(33), (36}, (31}, (39} and (40). Taking into account,, that ¢ does not depend on
the extra coordinate y and using (27}, (39}, (40) one can easy see that with a
"good"energy-momentum tensor ¢, (2) (for example, that of a static point-like
source) fields h,,(z,y) and hy(z,y) decay to zero at the spatial infinity.

Now let us examine gravity on the brane. The fluctuations of the metric on
the brane have the following form

kk
hyu(2,0) = by (2,0) + =m0t (41)
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Using (38}, one can easy see that equation (41} coincides with the solutions
for gravity on the brane, obtained in [6, 7, 8, 5], although we did not use the
"bent-brane"formulation, which was used in [6, 7].

Finally, we have to answer the question, which was posed in the title of the
paper. Obviously, it amounts to finding the number of the independent. degrees
of freedom in the RS2 model. As we have shown, we cannot completely gauge
away the radion field in the presence of matter on the brane (see (19}). The
situation is rather different, if there is no matter on the brane. In this case we
deal with equations for the free fields, possessing solutions of the plane wave
type, which do not vanish at infinity. Therefore, we have to drop the physical
boundary conditions for all the components of the metric fluctuations. Thus,
there is no need for the gauge function & to decay to zero at ¥ — £oo (though
the functions £, must still decay to zero at ¥ — =oc, because M must be
finite everywhere in E and §, = ezamwf"}. It means that the radion field can
be gauged out and is no more an independent degree of freedom of the RS2
model in this case. Nevertheless, the radion field appears, if we place matter
sources on the brane, and it allows us to solve consistently the equations of
motion.

We can find an analogy to this situation in electrodynamics. It is a common
knowledge that longitudinal photons do not appear in the asymptotic states
(on the mass shell}, whereas their contribution is important in the radiative
corrections (off the mass shell}. The radion field is very similar to longitudinal
photons: it is absent in the asymptotic states, but it is absolutely necessary for
consistently describing the interaction off the mass shell.

There is another problem, which may arise in the case of the absence of
matter on the brane. Since we drop the physical boundary conditions for the
field A, (A,|y—100 =+ 0), the gauge parameter £, defined by formula (24}, may
not decay to zero ~ 2 at infinity. This means that there may be additional
degrees of freedom in the RS2 model. This problem deserves a more detailed
investigation.

4 Conclusion

In the present paper we have studied the boundary conditions for the metric
fluctuations and the gauge functions in the RS2 model with and without mat-
ter on the branes and solved exactly the equations of motion in the presence of
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matter on the brane in a convenient gauge. The validity of the imposed gauge
conditions was carefully checked. The gauge is very simple and is more trans-
parent from the physical point of view, than the gauge used in [8], where the
equations for linearized gravity were solved exactly as well. Another advantage
of this gauge choice is that the brane remains straight in this case. We have
shown that although the radion is not an independent degree of freedom of the
model, it is indispensable in the case of the presence of matter on the brane
(in this case the radion field cannct be completely gauged away). The analysis
made above is completely equivalent to the one made in [3, 4], where linearized
gravity in the RS1 model was treated. We believe that the physically trans-
parent method, which was used in this paper, is useful for understanding the
general structure of both Randall-Sundrum models.
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