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Abstract

Characteristic features of processes mediated by gauge bosons are discussed in the
framework of theories with large extra dimensions. It is shown that if gauge bosons
propagate in the bulk, then there arises a destructive interference not only between
𝑊 and 𝑊 ′ (or 𝑍 and 𝑍 ′), but also between 𝑊 ′ and 𝑍 ′ and the Kaluza-Klein towers
of higher excitations of 𝑊 and 𝑍 bosons respectively. Specific calculations are made
and plotted for the LHC with the center of mass energy 14 TeV.

Э.Э. Боос, И.П. Волобуев, М.А. Перфилов, М.Н. Смоляков

ПОИСК 𝑊 ′ И 𝑍 ′-БОЗОНОВ В МОДЕЛЯХ

С БОЛЬШИМИ ДОПОЛНИТЕЛЬНЫМИ ИЗМЕРЕНИЯМИ
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Аннотация

В рамках теорий с большими дополнительными измерениями были рассмот-
рены особенности процессов с участием промежуточных калибровочных бозо-
нов. Показано, что в случае, когда калибровочные бозоны распространяются
во всем многомерном пространстве, возникает интерференция не только между
вкладами W-бозона и W’-бозона (или Z-бозона и Z’-бозона), но также и между
W’, Z’ и башнями Калуца-Клейновских возбуждений бозонов W и Z соответ-
ственно. Проведены расчеты соответствующих процессов для коллайдера LHC
при энергии в системе центра масс 14 ТэВ.
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c⃝НИИЯФ МГУ, 2011, http://www.sinp.msu.ru



1 Introduction

During the last years brane world models with ”universal extra dimensions” are widely discussed

in the literature [1]-[10]. In this case all the Standard Model fields except the Higgs field can prop-

agate in the whole multidimensional space-time. This leads to some interesting phenomenological

predictions, which will be discussed in this paper.

The characteristic feature of theories with compact extra dimensions is the presence of towers

of Kaluza-Klein excitations of the bulk fields, all the excitations of a bulk field having the same

type of coupling to the fields of the Standard Model. Let us suppose that for a bulk field 𝜙 (or

a set of fields) of arbitrary tensor type in (4 + 𝑑)-dimensional space-time the relevant part of the

action looks like

𝑆 =

∫ √−𝛾𝑑4+𝑑𝑥𝐿(𝜙) +

∫
brane

𝑑4𝑥 (𝐿(𝑆𝑀−𝜙) + 𝑔𝑀− 𝑑
2𝐽𝑆𝑀 ∗ 𝜙), (1)

where 𝛾𝑀𝑁 (𝑀,𝑁 = 0, 1, 2, 3, ..., 3 + 𝑑 , 𝑠𝑖𝑔𝑛 𝛾 = +,−, ⋅ ⋅ ⋅ ,−) denotes the background metric in

the bulk, 𝐿(𝜙) is the bulk Lagrangian of the field 𝜙, the Lagrangian of the Standard Model fields,

which do not propagate in the bulk, is denoted by 𝐿(𝑆𝑀−𝜙), the interaction term 𝐽𝑆𝑀 ∗ 𝜙 is the

scalar product of the corresponding current of the Standard Model fields 𝐽𝑆𝑀 and the field 𝜙 on

the brane, 𝑔 being a four-dimensional (in general, dimensional) coupling constant and𝑀 being the

fundamental energy scale of the (4+𝑑)-dimensional theory defined by the gravitational interaction;

we assume it to be in the 𝑇𝑒𝑉 energy range.

It is a common knowledge that the bulk field 𝜙(𝑥, 𝑦), 𝑥 = {𝑥𝜇}, 𝑦 = {𝑥𝑖}, (𝑖 = 4, ..., 3 + 𝑑), can

be expanded in Kaluza-Klein modes with definite masses 𝜙(𝑛)(𝑥) and their wave functions in the

space of extra dimension 𝜓(𝑛)(𝑦) as follows:

𝜙(𝑥, 𝑦) =
∑
𝑛

𝜓(𝑛)(𝑦)𝜙(𝑛)(𝑥), 𝑛 = (𝑛1, ..., 𝑛𝑑). (2)

The current 𝐽𝑆𝑀 and the coupling constant 𝑔 are completely defined by the interaction of the zero

mode 𝜙(0)(𝑥), which is a field of the Standard Model or the graviton field, with the fields of the

four-dimensional Standard Model according to

𝑔𝐽𝑆𝑀 =
𝛿𝐿𝑖𝑛𝑡

𝑆𝑀

𝛿𝜙(0)
. (3)

It is not difficult to show (see detailed derivation in [11]) that if we consider this theory for the

energy or momentum transfer much smaller, than the masses of the KK-excitations 𝜙(𝑛), 𝑛 ∕= 0, we

can pass to the effective ”low-energy” theory, which can be obtained by the standard procedure.

Namely, we have to drop the momentum dependence in the propagators of the heavy modes and

to integrate them out in the functional integral built with the original action. The action of the

resulting theory looks like

𝑆 =

∫
𝑑4𝑥

(
1

2
∂𝜇𝜙

(0) ∗ ∂𝜇𝜙(0) − 1

2
𝑀2

0 𝜙
(0) ∗ 𝜙(0) + 𝐿𝑖𝑛𝑡(𝜙

(0)) + 𝑔𝑀− 𝑑
2𝜓(0)(𝑦𝑏)𝐽𝑆𝑀 ∗ 𝜙(0)+

+ 𝐿(𝑆𝑀−𝜙) +
1

2
𝑔2𝑀−𝑑

(∑
𝑛∕=0

(𝜓(𝑛)(𝑦𝑏))
2

𝑀2
𝑛

)
𝐽𝑆𝑀 ∗Δ ∗ 𝐽𝑆𝑀

)
, (4)
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where 𝑀𝑛 is the mass of the 𝑛-th mode and Δ is the tensor structure (the numerator) of the

propagator with the momentum equal to zero, which is the same for all modes, {𝑦𝑏} denotes the

coordinates of the brane in the space of extra dimensions. Thus, we get a contact interaction of

the Standard Model fields

𝜆𝐽𝑆𝑀 ∗Δ ∗ 𝐽𝑆𝑀 , 𝜆 =
1

2
𝑔2𝑀−𝑑

(∑
𝑛∕=0

(𝜓(𝑛)(𝑦𝑏))
2

𝑀2
𝑛

)
, (5)

the sum of all the other terms in (4) being the Lagrangian of the Standard Model 𝐿𝑆𝑀 . We see

that the Lagrangian structure is fixed by the corresponding structure of the SM currents 𝐽𝑆𝑀 and

the spin-density matrix of the propagating field Δ defined by the type of the field 𝜙 as shown in

formula (4).

2 Effective Lagrangian for the gauge interaction

Here we discuss the case of contact interactions due to the 𝑆𝑈(2)×𝑈(1) gauge fields in the bulk.

These fields are described in the bulk by vector potentials 𝑊𝑀 and 𝐵𝑀 , which give rise to four-

dimensional vector and scalar fields. The latter are in the trivial and in the adjoint representations

of 𝑆𝑈(2) and cannot break 𝑆𝑈(2)×𝑈(1) to 𝑈(1)𝑒𝑚, as it is necessary in the SM. For this reason,

we assume that the gauge symmetry is broken in the standard way by the Higgs field on the brane.

It is useful to introduce the charged vector fields

𝑊±
𝜇 =

𝑊 1
𝜇 ∓𝑊 2

𝜇√
2

(6)

and the standard mixing of the neutral vector fields

𝑍𝜇 = 𝑊 3
𝜇 cos 𝜃𝑊 −𝐵𝜇 sin 𝜃𝑊 , (7)

𝐴𝜇 = 𝑊 3
𝜇 sin 𝜃𝑊 +𝐵𝜇 cos 𝜃𝑊 .

After the spontaneous symmetry breaking the neutral component of the brane Higgs field acquires

a vacuum value 𝑣/
√
2, and there arises a quadratic interaction of the vector fields of the form:

𝑔2𝑣2

4
𝑀−𝑑

∑
𝑚,𝑛

𝜓𝑚(𝐿)𝜓𝑛(𝐿) 𝜂
𝜇𝜈𝑊 (𝑚)+

𝜇 𝑊 (𝑛)−
𝜈 , (8)

(𝑔2 + 𝑔′2)𝑣2

8
𝑀−𝑑

∑
𝑚,𝑛

𝜓𝑚(𝐿)𝜓𝑛(𝐿) 𝜂
𝜇𝜈𝑍(𝑚)

𝜇 𝑍(𝑛)
𝜈 , (9)

𝜓𝑚(𝐿) denoting the wave functions of the KK modes of the fields 𝑊±
𝜇 and 𝑍𝜇 on the brane.

Due to this interaction the KK modes are no longer the mass eigenstates; the latter are now

superpositions of the modes [12]. But if the mass scale generated by the Higgs field 𝑔𝑣 is much

smaller, than the mass of the first KK excitation – and it is exactly the scenario we are studying

– this mixing of KK modes can be neglected [12]. The coupling of the KK modes to the fields of
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the SM is defined by that of the zero mode and looks like:

𝐿𝑖𝑛𝑡 =
𝑔√
2
𝑀− 𝑑

2

∑
𝑛>0

𝜓𝑛(𝐿)(𝐽
+𝜇𝑊 (𝑛)−

𝜇 + 𝐽−𝜇𝑊 (𝑛)+
𝜇 ) + (10)

+
𝑔

cos 𝜃𝑊
𝑀− 𝑑

2

∑
𝑛>0

𝜓𝑛(𝐿)𝐽
𝜇
(0)𝑍

(𝑛)
𝜇 + 𝑒𝑀− 𝑑

2

∑
𝑛>0

𝜓𝑛(𝐿)𝐽
𝜇
𝑒𝑚𝐴

(𝑛)
𝜇 ,

where 𝐽±
𝜇 and 𝐽𝜇

(0) are the weak charged and neutral currents of the SM particles and 𝐽𝜇
𝑒𝑚 is the

electromagnetic current of the SM particles. Integrating out the heavy modes, we again arrive at

the effective Lagrangian of form (5). Then taking into account that all the masses are proportional

to 𝑀 and the wave functions are proportional to 𝑀𝑑/2, we get the effective Lagrangian for the

interaction of the Standard Model fields due to the excitations of the 𝑆𝑈(2)×𝑈(1) gauge bosons

𝐿𝑒𝑓𝑓 =
𝐺𝐹𝑀

2
𝑊

𝑀2

(
𝐶𝑊𝐽

+𝜇𝐽−
𝜇 + 𝐶𝑊𝐽

−𝜇𝐽+
𝜇 + 𝐶𝑍𝐽

(0)𝜇𝐽 (0)
𝜇 + 𝐶𝐴𝐽

𝜇
𝑒𝑚𝐽𝑒𝑚𝜇

)
, (11)

𝐺𝐹 denoting the Fermi constant. The constants 𝐶𝑊 , 𝐶𝑍 , 𝐶𝐴 are again model dependent and can

be estimated only in a specific model. In particular, in the simplest model with two branes and

one flat extra dimension the constants can be estimated as

𝐶𝑊 =
𝜋2

6
√
2
, 𝐶𝑍 =

√
2𝜋2

6 cos2 𝜃𝑊
, 𝐶𝐴 =

2
√
2𝜋2 sin2 𝜃𝑊

3
.

Now let us estimate the constants entering the effective Lagrangian for the gauge interaction

in the case of the the Randall-Sundrum bulk [13]. First of all, since the bulk is 5-dimensional,

we can pass to the axial gauge, where the components corresponding to the extra dimension are

equal to zero [14]. Thus, there is no scalar fields in the effective four-dimensional theory. The

wave functions 𝑤𝑛(𝑦) of the fields 𝐴𝑛
𝜇(𝑥) with definite masses are solutions of a Sturm-Liouville

eigenvalue problem with Neumann boundary conditions. Due to this fact the wave function of the

massless zero mode, unlike the one for the tensor zero mode, is constant in the extra dimension.

The latter guarantees the universality of its coupling constant [15]. The wave functions of the

excitations on the brane behave like 𝑤𝑛(𝑦)∣𝑦=𝐿 ∼
√
𝑘, i.e. similar to the wave functions of the

tensor modes. The masses of the modes appear to be also in the TeV energy range [14]. We will

be interested in the cases where the masses of the modes and the mass gaps between the modes

are quite large, say, of the order of few TeV.

Below we will consider some processes with the Kaluza-Klein electroweak gauge bosons at the

energies accessible at LHC. It should be noted that the coupling constants and masses of the

modes depend significantly on the particular model under consideration. We will also extract the

first Kaluza-Klein mode from the effective Lagrangian (11) and suppose that the accessible energy

is above the production threshold of the first Kaluza-Klein mode. These modes are called 𝑊 ′ and

𝑍 ′ respectively. All the other modes will be taken into account by means of the contact effective

interactions.

Symbolic and numerical computations, including simulations of the SM background for LHC,

have been performed by means of the CompHEP package [16]. The corresponding Feynman rules

have been implemented into the new version of the CompHEP.
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3 Processes with Kaluza-Klein gauge bosons

In paper [17] it was shown in a model independent way that there exists a nontrivial destructive

interference between the processes mediated by 𝑊 and 𝑊 ′. If we assume that the gauge bosons

propagate in the bulk, then the 𝑊 boson is just the zero Kaluza-Klein mode, the 𝑊 ′ boson is the

first excitation and there exists an infinite tower of Kaluza-Klein modes above it. The same is

of course valid for 𝑍 and 𝛾. In this case we expect that the higher Kaluza-Klein modes can also

interfere with the zero and the first modes.

Now let us turn to specific examples. As it was noted in the previous section, the coupling

constants and masses of the modes depend significantly on the particular model. For simplicity we

suppose that all the Kaluza-Klein modes have the same coupling constant as those of the Standard

Model 𝑊 , 𝑍 bosons and photon respectively. The masses of the 𝑊 ′, 𝑍 ′ bosons and of the first

Kaluza-Klein excitation of the photon are 𝑀𝑊 ′ , 𝑀𝑍′ , 𝑀𝛾′ respectively. The remaining towers

of the modes were simulated in CompHEP with the help of artificial particles with the masses

𝑀𝑊 ′ 𝑠𝑢𝑚, 𝑀𝑍′ 𝑠𝑢𝑚, 𝑀𝛾′ 𝑠𝑢𝑚 and neglected momentum in the propagators. Indeed, schematically

we can write the amplitude squared as∣∣∣∣∣ 1

𝑝2 −𝑀2
+

1

𝑝2 −𝑀 ′2 −
∞∑
𝑛=2

1

𝑀2
𝑛

∣∣∣∣∣
2

= (12)∣∣∣∣ 1

𝑝2 −𝑀2
+

1

𝑝2 −𝑀 ′2 − 1

𝑀2
𝑠𝑢𝑚

∣∣∣∣2 ,
where 𝑀𝑛 correspond to the masses of the Kaluza-Klein modes. The latter formulas show the

origin of the parameters which will be used below. The term 1
𝑀2

𝑠𝑢𝑚
simply corresponds to the

effective contact interaction (11).

Now let us consider particular processes including Kaluza-Klein gauge bosons. All the calcu-

lations were made for the LHC with the center of mass energy 14TeV.

First we consider a process with 𝑊 ′ boson plus the remaining tower of the modes, namely, the

single top production. We suppose that the mass of the first mode𝑀𝑊 ′ = 2TeV, the effective mass

𝑀𝑊 ′ 𝑠𝑢𝑚 = 2.8TeV. The width of the 𝑊 ′ resonance has been calculated to be Γ𝑊 ′ = 65.7GeV.

The distributions for processes 𝑢𝑑 → 𝑡𝑏̄ presented in Figures 1 and 2 give the main contribution

to the process 𝑝𝑝→ 𝑡𝑏̄ at the LHC.

We made calculations for the Standard Model𝑊 boson only, for the Standard Model𝑊 boson

plus 𝑊 ′ boson only and for the Standard Model𝑊 boson plus 𝑊 ′ boson plus the remaining tower

of Kaluza-Klein modes. It is clear from Figure 1 that the presence of the 𝑊 ′ boson leads to a

destructive interference at the energies smaller than the mass of the𝑊 ′ resonance. At the energies

larger than the mass of the 𝑊 ′ resonance we see that there is an increase of the distributions tails

due to the existence of 𝑊 ′ and the corresponding Kaluza-Klein modes in comparison with the

case of the Standard Model 𝑊 only (see Figure 1). Note that Kaluza-Klein modes above 𝑊 ′ can

lead to a quite considerable modification of the distributions, look at Figure 2.

Second we consider a process with 𝑍 ′ boson and 𝛾′ boson plus the remaining towers of the

modes, namely, the Drell-Yan process with 𝑢 quarks, which is also dominant at the LHC. We
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suppose that the masses of the first modes are 𝑀𝑍′ = 2.3TeV, 𝑀𝛾′ = 2TeV, and the effective

masses are 𝑀𝑍′ 𝑠𝑢𝑚 = 3.2TeV, 𝑀𝛾′ 𝑠𝑢𝑚 = 2.8TeV. The widths of the 𝑍 ′ and 𝛾′ resonances

have been found to be Γ𝑍′ = 0.026TeV and Γ𝛾′ = 0.021TeV respectively. The corresponding

distributions are presented in Figures 3 and 4. One can see analogous properties of the distributions

as those in the case of single top production.

There is a good reason to believe that the NLO corrections do not destroy this interference

picture. First of all, it is clear that the corrections to the external lines do not alter the structure

of the amplitude (12). Of course, the most dangerous terms seem to be those with the self-energy

of gauge bosons. But these self-energy terms are defined so as to vanish on the mass shell and

contribute only to the particle widths and to the mass renormalization.

Thus, our analysis shows that the Kaluza-Klein modes should be taken into account because

they can make contribution to the amplitudes of the corresponding processes. Of course, in

principle single particles 𝑊 ′′ or 𝑍 ′′ can also provide analogous effects, but simultaneous effects

with Kaluza-Klein gravitons and 𝑊 ′, 𝑍 ′ Kaluza-Klein modes can be interpreted in favor of the

existence of extra dimensions.
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Figure 1: Invariant mass distribution for the single top production at the LHC
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Figure 2: 𝑃𝑇 distribution for the single top production at the LHC
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Figure 3: Invariant mass distribution for the Drell-Yan process at the LHC
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Figure 4: 𝑃𝑇 distribution for the Drell-Yan process at the LHC

10



Эдуард Эрнстович Боос
Игорь Павлович Волобуев

Максим Анатольевич Перфилов
Михаил Николаевич Смоляков

ПОИСК 𝑊 ′ И 𝑍 ′-БОЗОНОВ В МОДЕЛЯХ

С БОЛЬШИМИ ДОПОЛНИТЕЛЬНЫМИ ИЗМЕРЕНИЯМИ

Препринт НИИЯФ МГУ № 2011-1/865

Работа поступила в ОНТИ 20.01.2011

11


