На правах рукописи

МЫСЛИЦКАЯ НАТАЛЬЯ АЛЕКСАНДРОВНА

ДИНАМИКА ТРИПЛЕТНО ВОЗБУЖДЕННЫХ МОЛЕКУЛ ОРГАНОЛЮМИНОФОРОВ И НАНОЧАСТИЦ ВБЛИЗИ ПОВЕРХНОСТИ ТВЕРДОГО ТЕЛА И В СВОБОДНОМ ОБЪЕМЕ ВОДНЫХ И ВОДНО-ОРГАНИЧЕСКИХ РАСТВОРОВ

01.04.05 - «Оптика»

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре физики при ФГОУ ВПО «Калининградский государственный технический университет».

Научный руководитель:

доктор физико-математических наук, профессор В.В. Брюханов Калининградский государственный технический университет

Официальные оппоненты:

доктор физико-математических наук, профессор Салецкий А.М., Московский государственный университет им. М.В. Ломоносова

доктор химических наук, профессор Мельников Г.В., Саратовский государственный технический университет

Ведущая организация:

Оренбургский государственный университет

Защита диссертации состоится 16 декабря 2009 г. в 15 часов на заседании совета по защите докторских и кандидатских диссертаций Д 501.001.45 при Московском государственном университете им. М.В. Ломоносова по адресу: Россия, 119991, Москва, Ленинские горы, дом 1, строение 5 (19-й корпус НИИ ядерной физики имени Д.В. Скобельцына), ауд. 2-15.

С диссертацией можно ознакомиться в библиотеке НИИ ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова.

Автореферат разослан «<u>13</u>» ноября 2009 г.

Ученый секретарь

совета по защите докторских и кандидатских диссертаций Д 501.001.45

кандидат физико-математических наук

Вохник О.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В эпоху бурного развития нанотехнологий, направленного на создание приборов полупроводниковой твердотельной и молекулярной наноэлектроники и нанофотоники, которые получили широкое распространение как в исследовательских лабораториях, так и в промышленности, возникает все больше фундаментальных проблем, связанных с влиянием среды с нанометрическим масштабом на скорость обмена оптической информацией. Другим важнейшим направлением использования достижений нанотехнологии материалов является создание оптических химических и биомедицинских сенсоров – распознающих элементов устройств, избирательно реагирующих на химические соединения. Здесь конструкторы молекулярных чипов сталкиваются с проблемами, во-первых, равномерного молекулярного наслоения (литографии) на наношероховатой поверхности подложки молекулярных первичных оптических преобразователей и, во-вторых, с проблемами градуировки сенсоров в реальных условиях измерения при наличии жидкости на поверхности. Вместе с тем известно, что многие проблемные вопросы обмена квантовой оптической информацией в молекулярных системах, находящихся в различных средах, давно и успешно решает молекулярная спектроскопия.

В малых пространственных областях, сравнимых с размерами молекул, кинетика транспорта электронной энергии и массоперенос будут отличаться от кинетики и массопереноса в однородных средах, в особенности на границе раздела фаз. В этом случае значительный научный и практический интерес представляют, с одной стороны, исследования указанных проблем в каждом отдельном случае, а с другой стороны, выявление общих физических причин различия динамики возбуждений макромолекул и динамики наночастиц в объеме жидкости и в тонких слоях на границе твердое тело – жидкость.

Методы и инструментарий молекулярной спектроскопии на сегодняшний день позволяют исследовать динамику возбуждений и диффузионную молекулярную динамику в средах с различной топологией. Использование оптических методов молекулярной спектроскопии – спектрально-кинетические импульсного фотолиза – и метода упругого молекулярного рассеяния света позволило исследовать динамику процессов дезактивации триплетных состояний молекул органолюминофоров и диффузионную динамику броуновского движения наночастиц в жидкости на границе с твердым телом и в объеме водных и водноорганических растворов.

Цель работы – установление механизмов нелинейной динамики триплетно возбужденных молекул органолюминофоров и наночастиц вблизи поверхности твердого тела и в

свободном объеме водных и водно-органических растворов в широком интервале температур, а также выявление особенностей диффузии наночастиц в ламинарных пограничных потоках вязкой жидкости.

Задачи исследования:

 экспериментально исследовать методом фотонной корреляционной спектроскопии влияние температуры и пористой поверхности твердого тела на диффузионную динамику наночастиц различной химической природы и размера в свободном объеме воды и вблизи фрактальной поверхности твердого тела;

 смоделировать и вычислить фрактальную размерность траектории диффузионного броуновского движения наночастиц латекса и серебра на границе пористое твердое тело – вода, в тонких пленках воды с наночастицами серебра на поверхности анодированного алюминия и сравнить ее с топологией поверхности твердого тела, измеренной методом атомносиловой микроскопии;

- определить влияние пористой поверхности твердого тела и концентрации сывороточного альбумина плазмы крови человека на диффузионную динамику в водных растворах;

 экспериментально исследовать методом импульсного фотолиза влияние структурирования водно-спиртовых растворов на интеркомбинационные переходы в молекулах родаминовых и акридиновых красителей, выяснить механизм этого влияния, а также определить кинетические и энергетические особенности эффекта внешних тяжелых атомов и пересольватации взаимодействующих частиц в зависимости от содержания органического компонента в воде;

- изучить термодинамические и оптические характеристики молекулярного светорассеяния на наночастицах в структурированных водных и водно-органических растворах;

 методом фотонной корреляционной спектроскопии исследовать диффузию наночастиц в ламинарном пограничном потоке вязкой жидкости на полированной поверхности и в ядре потока.

Методы исследования. Основные экспериментальные результаты, представленные в диссертационном исследовании, получены при изучении кинетики дезактивации триплеттриплетного поглощения органолюминофоров на установке импульсного лампового фотолиза (флеш-фотолиза) в широком интервале температур. Были использованы методы молекулярной спектрофотометрии и флуориметрии на сертифицированных отечественных приборах. Динамика молекулярного светорассеяния на наночастицах в водных и водноорганических растворах изучалась методом фотонной корреляционной спектроскопии. То-

пология поверхности твердых тел – анодированного алюминия и широкопористого кремнезема исследовалась на атомно-силовом микроскопе СММ-2000, изготовленном в г.Зеленограде. Гидродинамика пограничного слоя жидкости с наночастицами изучалась на оригинальной установке, совмещенной с установкой корреляционной спектроскопии.

Научная новизна работы состоит в развитии фундаментальных разделов фотофизики молекул и молекулярной динамики, основу которых составляет изучение обменнорезонансных взаимодействий и дезактивации возбужденных состояний люминофоров и динамики наночастиц в свободной жидкости и вблизи поверхности твердого тела, а также в водно-органических растворах.

1. Впервые методом фотонной корреляционной спектроскопии экспериментально исследована и смоделирована аномальная диффузия наночастиц латекса и серебра в воде вблизи пористой поверхности твердого тела (пористый кремнезем и анодированный алюминий), что позволило определить фрактальную размерность структурированного адсорбционного слоя из молекул воды и фрактальную размерность траектории диффузионного движения наночастиц, которая уменьшается с увеличением температуры раствора.

2. Определены энергии активации диффузионного броуновского движения наночастиц вблизи поверхности пористого твердого тела и в объеме воды; показано, что при температурах 40 – 45°C различие в коэффициентах диффузии наночастиц вблизи поверхности и в объеме воды исчезает, что означает разрушение адсорбционного слоя из молекул воды.

3. Показано, что диффузия молекул сывороточного альбумина плазмы крови человека значительно замедляется вблизи пористой поверхности твердого тела в связи с образованием адсорбционного слоя из молекул воды и белка; определена энергия агрегации молекул альбумина и энергия денатурации белка.

4. Установлено влияние клатратного (клеточного) наноструктурирования водноспиртовых растворов на безызлучательные интеркомбинационные переходы $S_1 \sim T_1$ и $T_1 \sim S_0$ в молекулах родаминовых и акридиновых красителей.

5. Показано, что в жидких водно-органических средах эффект внешних тяжелых атомов йода и брома заключается в ускорении безызлучательной дезактивации триплетных состояний органолюминофоров, а кинетика процесса лежит в диффузионной области и осложнена сольватационными эффектами взаимодействующих частиц при смене состава растворителя.

6. Обнаружена и исследована методом фотонной корреляционной спектроскопии в широком интервале температур аномальная диффузия наночастиц различного диаметра и химической природы, внедренных в различные водно-органические смеси; показано, что

существуют две области объемного содержания органического компонента, в которых наблюдаются экстремальные значения коэффициентов диффузии наночастиц.

7. Впервые с помощью метода фотонной корреляционной спектроскопии определены толщины ламинарного пограничного слоя потока наночастиц; обнаружено, что переход ламинарного течения в вихревое происходит при значительно меньших числах Рейнольдса, на которые указывает теория и практика гидродинамических исследований.

Практическая ценность работы:

1. Экспериментальные результаты и моделирование процессов аномальной диффузии наночастиц различного размера и химической природы вблизи пористой поверхности могут быть использованы в медико-биологических исследованиях поведения воды и крови в капиллярах, порах и мембранах, вблизи костной ткани и т.д.

2. Полученные результаты по безызлучательной дезактивации триплетных состояний молекул органолюминофоров в водно-органический растворах в областях клатратного структурирования смесей и в областях содержания органического компонента, где происходит пересольватация взаимодействующих молекул, могут быть использованы при создании сред для лазеров на красителях, в аналитической химии при концентрировании реагентов в нанополостях смеси, а также при решении задач химической утилизации солнечной энергии.

3. Предложенный метод зондирования структур водных и водно-органических растворов с помощью наночастиц различной химической природы и размеров может быть использован и для других жидких растворов, где имеются задачи определения стерических затруднений в бимолекулярных реакциях, проблемы динамического определения размеров пор и моделирования кинетики физико-химических процессов в тонких слоях жидкости на поверхности и в порах твердого тела.

4. Результаты исследования диффузии наночастиц в пограничных слоях ламинарного потока вязкой жидкости могут быть использованы при изучения кинетики и траектории отдельных наночастиц в потоке, что является большой проблемой в современной гидродинамике тонких слоев.

Основные защищаемые положения.

1. Диффузионные процессы макромолекул белков и наночастиц латекса и серебра вблизи поверхности пористого твердого тела происходят по законам аномальной диффузии, причем влияние фрактальных свойств поверхности твердого тела проявляется на макроскопических расстояниях от поверхности и определяется фрактальными свойствами адсорбционного слоя из молекул воды, которые изменяются с повышением температуры раствора.

2. При температурах 40 – 45°С различие в коэффициентах диффузии наночастиц вблизи поверхности и в объеме воды исчезает, что означает разрушение адсорбционного слоя из молекул воды.

3. Диффузия молекул сывороточного альбумина плазмы крови человека значительно замедляется вблизи пористой поверхности твердого тела в связи с образованием адсорбционного слоя из молекул воды и белка.

4. Клатратное наноструктурирование водно-спиртовых растворов существенно влияет на безызлучательные интеркомбинационные переходы $S_1 \sim T_1$ и $T_1 \sim S_0$ в электронновозбужденных молекулах родаминовых и акридиновых красителей.

5. В жидких водно-органических средах эффект внешних тяжелых атомов йода и брома заключается в ускорении безызлучательной дезактивации триплетных состояний органолюминофоров, а кинетика процесса лежит в диффузионной области и осложнена сольватационными эффектами взаимодействующих частиц при смене состава растворителя.

6. Существуют две области объемного содержания органического компонента, в которых наблюдаются экстремальные значения коэффициентов диффузии наночастиц.

7. Переход ламинарного течения в вихревое происходит при значительно меньших числах Рейнольдса, на которые указывает теория и практика гидродинамических исследований.

Апробация работы. Основные результаты диссертационной работы докладывались: на IV Международной научной конференции «Инновации в науке и образовании – 2006» (КГТУ, Калининград, 21 – 23 октября 2006 г); на V Международной научной конференции «Инновации в науке и образовании – 2007» (КГТУ, г. Калининград, 23 – 25 октября 2007 г.); на Международной научной конференции «Эксклав: из настоящего в будущее» (КГТУ, г. Калининград, 23 – 25 октября 2007 г.); на Международной научной конференции «Эксклав: из настоящего в будущее» (КГТУ, г. Калининград, 23 – 25 октября 2007 г.); на ХIV Международной научной конференции «Эксклав: из настоящего в будущее» (КГТУ, г. Калининград, 23 – 25 октября 2007 г.); на ХIV Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов». (МГУ им. М.В. Ломоносова, г. Москва, 11 – 14 апреля 2007 г.); на XV Всероссийской конференции «Структура и динамика молекулярных систем». (г. Яльчик, 2008 г.); на III Троицкой конференции «Медицинская физика и инновации в медицине» (г. Москва, 3 – 6 июня 2008 г.); на VI юбилейной Международной конференции «Инновации в науке и образовании – 2008» (КГТУ, г. Калининград., 21 – 23 октября 2008 г.); на Международной конференция «Фотоника молекулярных наноструктур» (ОГУ, г. Оренбург, 16 – 19 сентября 2009 г.); на VII Международной конференции «Инновации в науке и образовании – 2009» (КГТУ, г. Калининград, 20 – 22 октября 2009 г). Публикации. Основные результаты проведенных исследований опубликованы в 19 печатных работах, включая 4 статьи в журналах, рекомендованных ВАК для соискателей ученых степеней кандидата и доктора наук.

Личный вклад автора. Соискатель ученой степени принимал личное участие в постановке задач исследований, проведении экспериментов, моделировании изучаемых процессов, обработке результатов и их анализе, а также в подготоке материлов к публикации в открытой печати и публичному представлению на конференциях.

СОДЕРЖАНИЕ РАБОТЫ

Структура работы. Работа состоит из введения, пяти разделов и заключения.

Во **ВВЕДЕНИИ** обоснована актуальность темы, сформулирована цель, определены основные защищаемые положения и новизна, а также практическая значимость работы.

В **ПЕРВОМ РАЗДЕЛЕ** представлен обзор научной литературы по динамике воды и водно-органичесих растворов типа вода – спирт.

Рассмотрены основные положения теории молекулярного движения в жидких структурированых средах. Показаны основные преимущества модели структурных корреляционных функций, используемых для описания динамики жидких сред. Проанализированы основные подходы к вычислению корреляционных функций скорости частиц жидкости: метод молекулярной динамики, модельный метод, стохастический метод и безмодельный метод. Рассмотрены основные принципы применения вышеназванных методов для описания молекулярного движения в воде.

В разделе рассмотрены основные модели структуры воды, описывающие уникальные динамические, термодинамические и оптические свойства, и показано, что короткоживущие водородные связи между соседними атомами водорода и кислорода в объеме воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров).

Описаны основные экспериментальные и теоретические методы исследования структуры и аномальных динамических свойств воды.

В разделе рассмотрено строение водно-органических растворов, приведены результаты исследования строения и динамических свойств водно-спиртовых смесей, приведены основные достижения авторов работ по исследованию концентрационных зависимостей оптических свойств воды и водно-органических растворов на основе использования методов молекулярного рассеяния света, лазерного и лампового флеш-фотолиза и др. В разделе также показано, что важное влияние на эффективность диффузионных и фотофизических процессов имеет вода и другие растворители, адсорбированные на пористой поверхности твердых тел. Приведены некоторые особенности диффузионных процессов на фрактальной поверхности твердого тела и показано отсутствие в литературе должного освещения многих вопросов аномальной диффузии наночастиц и нелинейной динамики триплетных возбуждений органолюминофоров вблизи пористой поверхности твердого тела.

Во **ВТОРОМ РАЗДЕЛЕ** представлено описание использованных в работе методов по исследованию аномальных динамических свойств органолюминофоров и наночастиц в воде, водно-органических растворах и на границе раздела фаз твердое тело – жидкость.

Описана оригинальная установка импульсного лампового фотолиза, на которой были проведены исследования кинетики дезактивации триплетных состояний жидких растворов органолюминофоров. Спектры поглощения, флуоресценции и спектры возбуждения флуоресценции исследовались на сертифицированных отечественных приборах. В разделе подробно рассмотрен метод фотонной корреляционной спектроскопии и описана работа созданной установки для анализа динамических флуктуаций интенсивности рассеянного излучения гелий-неонового лазера для расчета коэффициента диффузии наночастиц в воде.

Представлена разработанная методика получения адсорбатов люминофоров на кремнеземе (силохром C-80, диаметр пор d = 40 нм) и анодированном алюминии, приготовленном автором с различными величинами пористости. Описан метод атомно-силовой микроскопии, применявшийся в работе для исследования структурных особенностей поверхности твердых тел. Приведена и описана схема установки по исследованию гидродинамики тонких слоев переносного движения наночастиц в ламинарном потоке жидкости. Приведены ошибки измерения физических величин в используемых методах.

ТРЕТИЙ РАЗДЕЛ работы посвящен исследованию особенностей динамики диффузионного движения наночастиц латекса различного размера, наночастиц серебра Ag_2Ag^+ (радиус R = 20 нм) и молекул альбумина плазмы крови человека в воде с помощью метода фотонной корреляционной спектроскопии.

В первой и второй частях раздела приведены результаты исследования броуновского движения латексных наношариков и наночастиц серебра в воде вблизи пористых поверхностей широкопористого кремнезема и анодированного алюминия при различных температурах. В экспериментах были определены значения коэффициентов диффузии D наночастиц на различных расстояниях от зеркальной поверхности алюминия, гидрофобной поверхности полиэтилентерефталата (ПЭТ), пористой поверхности кремнезема и анодированного алюминия. На рис.1 приведены графики величины D латексных наночастиц (R = 50 нм) вблизи поверхности зеркального алюминия (кривая I), пористого анодированного алюминия (кривая I) 2) и наночастиц серебра вблизи кремнезема (кривая 3) от расстояния *r* до поверхности твердого тела.

Рис.1. (Пояснения в тексте)

Результаты экспериментов показали, что вблизи зеркальной поверхности алюминиевой пластины коэффициент диффузии D наночастиц имеет примерно постоянную величину около $6 \cdot 10^{-8}$ см²/с и не изменяется при переходе в свободный раствор на расстояниях более 2 - 3 мм. Вместе с тем, измерения D вблизи (< 100 мкм) пористых поверхностей и в свободном растворе показывают его рост на макроскопических по сравнению с размерами наночастиц расстояниях. Аналогичные исследования были проведены для частиц из латекса и других размеров (50 и 600 нм) вблизи пористых поверхностей и гидрофобной поверхности полиэтилентерефталата.

В работе было сделано предположение, что фрактальная пористая поверхность структурирует близлежащие слои воды и поэтому коэффициент диффузии изменяется с удалением от поверхности по законам аномальной диффузии:

$$D(r) = D_{\infty} - (D_{\infty} - D_0) \cdot \left(\frac{r}{r_0}\right)^{-\theta}.$$
(1)

Здесь D_{∞} – коэффициент диффузии в свободной жидкости, D_0 - коэффициент диффузии вблизи поверхности твердого тела (на минимальном расстоянии r_0 от фрактальной поверхности). По экспериментально полученным значениям коэффициента диффузии на различных расстояниях до поверхности с использованием формулы для D(r) были вычислены значения показателя аномальной диффузии θ , фрактальная размерность d_f и фрактальная размерность траектории наночастиц d_w вблизи пористых поверхностей при различных температурах.

Таблица

пористых поверхностей анодированного алюминия и кремнезема при различных температурах					
Пористая поверхность	Радиус наночастицы, нм	Температура <i>t</i> , °C	Коэффициент аномальной диффузии θ	Фрактальная размерность <i>d_f</i>	Фрактальная размерность траектории <i>d_w</i>
Анодированный алюминий	30	6	0,53	1,56	2.53
Анодированный алюминий	50	18	0,43	1,48	2,43
Анодированный алюминий	50	23	0,42	1,47	2,42
Анодированный алюминий	50	30	0,34	1,37	2,34
Анодированный алюминий	600	30	0,57	1,62	2,57
Кремнезем широкопористый	100	30	0,32	1,35	2,32

Значения коэффициента аномальной диффузии θ, фрактальной размерности *d_f* и фрактальной размерности *d_w* траектории диффузионного движения латексных наночастиц вблизи пористых поверхностей анодированного алюминия и кремнезема при различных температурах

Из таблицы видно, что с увеличением температуры раствора уменьшается фрактальная размерность d_w траектории наночастиц малого радиуса вблизи пористой поверхности анодированного алюминия. Из таблицы также видно, что при замене анодированного алюминия на кремнезем, имеющий поры примерного такого же размера, и при одновременном увеличении размеров наночастиц до R = 100 нм фрактальная размерность d_w траектории наночастиц при температуре раствора 30°С практически не изменяется.

При исследовании диффузионных процессов наночастиц большего радиуса (R = 600 нм) при температуре t = 30°C было установлено, что также имеются структурные ограниче-

ния свободному броуновскому движению наночастиц вблизи пористой поверхности анодированного алюминия ($\theta > 0$) и эти ограничения значительно больше, чем для малых размеров наночастиц.

Сложная дистанционная зависимость коэффициента диффузии *D*, а также исследование химической структуры и топологии поверхности анодированного алюминия позволили сделать вывод о том, что диффузия вблизи пористой поверхности анодированного алюминия (кремнезема) носит аномальный характер (диффузия Леви):

$$\left\langle x^{2}\right\rangle = Dt_{0} \left(\frac{t}{t_{0}}\right)^{2H},$$
(2)

где $\langle x^2 \rangle$ – среднеквадратичное смещение; D – обобщенный коэффициент диффузии; t/t_0 -приведенное время, H – показатель Хеста.

Анализируя значения величин H, по значениям d_w ($d_w = H^1$) из таблицы, можно заметить, что во всех случаях H < 1/2, что подтверждает аномальный характер диффузии вблизи пористой поверхности. Вместе с тем известно, что в изотропной среде фрактальная размерность траектории броуновской частицы стремится к значению $d_w = 2$, что находится в согласии с уменьшением d_w при температурных исследованиях диффузионных процессов наночастиц в нашей работе.

Таким образом, проведенные исследования молекулярного рассеяния света в воде на латексных шариках и наночастицах серебра показали, что вблизи пористой поверхности твердого тела вода структурирована и имеет низкоразмерную топологию.

В следующей части третьего раздела было исследовано рассеяние лазерного излучения от наночастиц, расположенных в тонких пленках воды на фрактальной поверхности анодированного алюминия.

Зависимость интенсивности света, рассеянного на фрактальной поверхности, от вектора рассеяния описывается формулой

$$I(q) \sim q^{-m} \,, \tag{3}$$

где $q = (4\pi/\lambda)\sin(\theta/2)$ – вектор рассеяния, λ – длина волны света, θ – угол рассеяния. При рассеянии на «массовых» фракталах параметр *m* равен фрактальной размерности, при рассеянии на фрактальной поверхности $m = 6 - d_f$, где d_f – фрактальная размерность поверхно-

сти. Таким образом, по углу наклона зависимости $\ln I$ от $\ln q$ в работе была найдена фрактальная размерность поверхности анодированного алюминия при различных временных интервалах анодирования. Измерения показали, что при увеличении времени анодирования с 15 до 50 минут фрактальная размерность d_f поверхности увеличивалась от значения 2,09 до значения 2,29 соответственно. С целью установления корреляции полученных данных о топологии поверхности методом малоуглового рассеяния были исследованы сканы соответствующих поверхностей методом атомно-силовой микроскопии. Как показали результаты сканирования поверхностей анодированного алюминия, полученные данные для малого времени анодирования в точности совпадают с данными, полученными методом малоуглового рассеяния света.

Аналогичным образом были проведены эксперименты по исследованию малоуглового рассеяния света на наночастицах серебра Ag_2Ag^+ в пленке воды на поверхности анодированного алюминия. Измерения показали, что фрактальная размерность d_f пленки, определенная указанным методом, приближается к значениям фрактальной размерности «сухой» поверхности $d_f \sim 2,3$.

Таким образом, в работе был предложен бесконтактный оптический метод определения топологии поверхности и слоя воды, граничащей с ней. В качестве параметра, характеризующего структуру пограничного слоя воды, была использована хаусдорфова (фрактальная) размерность поверхности. Показано, что адсорбционный слой из молекул воды имеет низкоразмерную топологию на макроскопических расстояниях от пористой поверхности.

В четвертой части третьего раздела исследовалось упругое светорассеяние молекул сывороточного альбумина плазмы крови человека, играющего важнейшую роль в жизнедеятельности человека. Гидродинамика движения крови по сосудам человека происходит с участием больших молекул белков, гемоглобина и пр. вблизи «негладкой» поверхности кровеносных сосудов. Поэтому представляло интерес получить сведения о подвижности молекул альбумина вблизи пористой поверхности и сравнить ее с подвижностью в объеме водного раствора. Представляло интерес также исследовать процесс ассоциации молекул альбумина и его денатурацию под влиянием температуры.

В первой серии экспериментов исследовалась самодиффузия молекул альбумина вблизи пористых поверхностей силохрома и анодированной поверхности алюминия. Вычисления величин коэффициентов диффузии *D* молекул альбумина вблизи пористых поверхностей и в объеме воды показали, что ход величин *D* от расстояния до поверхности пористого тела полностью аналогичен зависимости, приведенной на рис.1 для наночастиц латекса и серебра. Следовательно, самодиффузия молекул альбумина вблизи поверхности пористого тела также замедлена.

Моделирование диффузионного движения молекул альбумина в водном растворе вблизи поверхности твердого тела формулой (1), показало, что фрактальная размерность приповерхностного слоя (адсорбционного слоя) равна $d_f \sim 1,1$. В работе были сделаны предположения о том, что, во-первых, траектории случайного блуждания молекул альбумина являются фрактальными, во-вторых, движение частиц происходит по одномерным каналам адсорбционного слоя из молекул воды и молекул альбумина, в-третьих, фрактальность адсорбционного слоя не совпадает с фрактальностью поверхности твердого тела, что означает «вложение» фрактала адсорбционного слоя во фрактал поверхности твердого тела.

С целью изучения процессов агрегации и денатурации белка альбумина были проведены температурные исследования молекулярного рассеяния света водных растворов альбумина повышенной концентрации C = 12 мг/мл. На рис.2 представлены результаты этих исследований, где приведена температурная зависимость коэффициента D (кривая I) и гидродинамического радиуса (кривая 2) молекул альбумина в воде. Из рисунка видно, что кривые испытывают «излом» в области температуры 45° С, что совпадает с литературными данными о денатурации белка при указанной температуре.

Рис.2. (Пояснения в тексте)

С помощью зависимости Аррениуса по результатам исследований температурной зависимости коэффициента диффузии *D* в диапазоне температур 20 – 44,4°C, мы определили

энергию активации диффузионного движения молекул альбумина: $E_a = 7,1$ кДж/моль. Сравнивая полученное значение энергии активации диффузионного движения молекул альбумина с энергией активации движения наночастиц ($E_a=19,9$ кДж/моль) в воде, можно заметить, что для растворов молекул альбумина энергия активации значительно меньше и не равна табличным значениям самодиффузии молекул воды $E_a = 18,6$ кДж/моль. Можно предположить, что найденное значение энергии активации для альбумина определяет энергию агрегации его молекул, а при температуре выше 45°C происходит денатурация белка – молекулы альбумина.

Таким образом, выполненные исследования по изучению диффузии молекул сывороточного альбумина плазмы крови человека вблизи пористой поверхности твердого тела и в свободном водном растворе показывают, что, во-первых, вблизи пористой поверхности вследствие наличия адсорбционного слоя из структурированной воды и молекул альбумина диффузия молекул значительно замедляется и, во-вторых, молекулы альбумина подвержены процессу агрегации, что необходимо учитывать при построении экспериментов в методе фотонной корреляционной спектроскопии.

В **ЧЕТВЕРТОМ РАЗДЕЛЕ** представлены результаты исследований структурных изменений в водно-органических растворах при зондировании этих структур наночастицами и триплетно возбужденными молекулами, чувствительными к динамике тушения примесями и межмолекулярным взаимодействиям, с использованием методов корреляционной спектроскопии и импульсного фотолиза.

В первой части раздела представлены экспериментальные результаты по исследованию интеркомбинационных переходов в молекулах родаминовых и акридиновых красителей в обескислороженных водных и водно-спиртовых раствороя. В первой сериии экспериментов процессы структурирования водно-спиртовых растворов в работе изучали по их влиянию на константы скорости k_T квазимономолекулярной дезактивации триплетных состояний молекул красителя родамина 6Ж ($C = 8 \cdot 10^{-6}$ моль/л) и трипафлавина ($C = 5 \cdot 10^{-7}$ моль/л), вычисленных по изменению триплет-триплетного поглощения (ТТ-поглощения) после импульсного лампового возбуждения. Одновременно изучалось влияние внешних тяжелых атомов соли LiBr и KI в водно-спиртовых растворах на константу k_T . Измерения оптической плотности ТТ-поглощения растворов красителей проводились при температуре 21°С. Добавление постепенно возрастающих количеств пропилового спирта к водному раствору красителя родамина 6Ж ($C = 8 \cdot 10^{-6}$ моль/л) от концентрации пропилового спирта в смеси. На рис.3 показана зависимость констант k_T триплетных состояний родамина 6Ж ($C = 8 \cdot 10^{-6}$ моль/л) от концентрации пропилового спирта в смеси в отсутствие (кривая I) и в присутствии (кривая 2) тушителя LiBr (C = 1,6 моль/л). Из рисунка видно, что зависимост k_T молекул родамина 6Ж (1) имеет максимум при концентрации спирта в смеси C = 11 - 13 об.%. Сопоставляя данные этого эксперимента с известными термодинамическими и спектроскопическими исследованиями процессов образования и разрушения клатратной (клеточной) структуры водно-органических растворов, наибольшее значение величин k_T молекул родамина 6Ж лежит в области максимальной концентрацией клатратных структур в смеси – 13 – 17%-ного объемного содержания пропанола в растворе.

При анализе экспериментальных данных было выдвинуто предположение, что увеличение величин k_T красителей в области клатратного структурирования (12 – 13 об.% спирта) может быть связано с установлением H-связей молекул родамина 6Ж с клатратами, поскольку молекулы данного красителя из-за своего электронного строения очень легко устанавливает водородные связи, в результате чего ускоряется безызлучательная дезактивация триплетных состояний молекул. В диапазоне концентраций спирта от 40 до 90%-ного объемного содержания существуют микрофазы (глобулы) молекул воды и спирта, когда остаются неизменными диэлектрические, термодинамические и другие характеристики раствора. При этом молекулы красителей входят в термодинамически выгодные области раствора с большим содержанием воды, поскольку молекулы красителя гидрофильны, однако при этом начинает разрушаться вторая координационная сфера сольватной оболочки, в которой происходит замена молекул воды на молекулы спирта, и константы k_T уменьшаются.

При дальнейшем увеличении содержания спирта (концентарции спирта свыше 90 об. %) в растворе величина *k*_T возрастала (рис.3, кривая *1*), что может быть объяснено

ускорением процесса пересольватации, состоящего в замене молекул воды на молекулы спирта в первой координационной сфере. Аналогичные результаты по влиянию структурных изменений в водно-спиртовых растворах и эффектов пересольватации на величины k_T были получены и для триплетно возбужденных молекул трипафлавина. В работе было также проанализировано изменение ΔD_T оптической плотности молекул красителей в водноспиртовых растворах при смене состава смеси. Было установлено, что при малых содержаниях спирта происходит увеличение относительного выхода флуоресценции и увеличение оптической плотности TT-поглощения. Такие изменения в работе объяснены клатратным структурированием водно-спиртовых растворов при концентрациях спирта 12 – 13 об.%, а также эффектами пересольватации молекул красителей и смене молекул воды в сольватной оболочке на молекулы спирта.

Влияние внешних тяжелых атомов брома ($C = 1,6 \cdot 10^{-2}$ моль/л) и йода ($C = 5,0 \cdot 10^{-6}$ моль/л) на триплетные состояний молекул красителей при смене состава водноспиртововой смеси было не одинаковым для молекул родамина 6Ж и трипафлавина. Так, из рис.3 (кривая 2) видно, что существует небольшое увеличение величин k_T в присутствии атомов брома по сравнению с чистыми смесями и лишь при концентрациях свыше 60 об.% заметно некоторое увеличение констант k_T . Дезактивации триплетно-возбужденных молекул трипафлавина в присутствии атомов йода значительно изменяется при концентрациях пропанола свыше 60 об.%. При этом возрастание величин k_T происходит по экспоненциальной зависимости вида:

$$k_T = k_{T0} \exp(am) \tag{4}$$

где k_T и k_{T0} – константы сокрости дезактивации Т-состояний молекул трипафлавина при содержании спирта в смеси свыше 6 об.% и при 6 об.% содержания спирта соответственно; a – константа; m – мольная доля спирта. В работе были использованы известные в физхимии растворов формулы взаимодействия иона с диполем в растворе и были оценены расстояния этих взаимодействий. Было получено, что обменный эффект внешних тяжелах атомов йода реализуется на расстояниях $r \sim 0.75$ нм, а размеры молекул пропилового спирта равны $l \sim 0.72$ нм. Это свидетельствует о том, что взаимодействие происходит из второй координационной сферы сольватной оболочки красителя. У молекул родамина 6Ж эффект в учеличени констант тушении k_T под влиянием атомов брома не был так ярко выражен, как у триплетных молекул трипафлавина. Однако у молекул родамина 6Ж под влиянием атомов брома в водно-пропаноловых смесях возрастал относительный выход фосфоресценции по закону (4), что позволило аналогично определить радиус взаимодействия с с внешними

тяжелыми атомами брома *r* ~ 0,5 нм. Это означает, что эффект развивается в результате внедрения атомов брома в сольватную оболочку.

Таким образом, проведенные исследования дезактивации триплетных состояний молекул родамина 6Ж показали, что известные физические процессы клатратного структурирования водно-органических смесей оказывают влияние на скорость дезактивации триплетных состояний молекул красителей в результате установления водородных связей молекул красителей со структурами в растворе.

Во второй части четвертого раздела продолжено обсуждение влияния структурирования водно-органических растворов на электронные состояния молекул органолюминофоров. Для понимания влияния структурирования при малых содержаниях спирта на величины k_T дезактивации триплетных состояний молекул родамина 6Ж, а также ΔD_T были рассмотрены три возможные причины: примесное тушение (возможно кислородом); перестройка сольватов и возможное влияние универсальных межмолекулярных взаимодействий (УМВ); установление водородных связей.

Для решения вопроса о примесном тушении были сравнены константы *k*_T при различных температурах с помощью формулы Аррениуса:

$$k_T = k_{T0} \exp\left(-\frac{\Delta E_a}{kT}\right),\tag{5}$$

(здесь ΔE_a – энергия активации) при концентрация спирта в смеси 20 и 80 об.% соответственно. Расчеты показали: $\Delta E_{a,20\%} = 25,9$ кДж/моль и $\Delta E_{a,80\%} = 28,5$ кДж/моль. Следовательно, уменьшенный барьер тушения при 20 об.% спирта в смеси может обусловливать и более высокую скорость тушения, однако полученные для молекул родамина 6Ж и трипафлавина изменения в константах k_T значительно больше предсказываемых уравнением Аррениуса. Дополнительным подтверждением того, что примесное тушение не является причиной увеличения k_T при малых содержаниях спирта (~ 0 – 13 об.%), является увеличение макровязкости структурированных спиртом клатратных структур воды.

Таким образом, предложенные объяснения механизмов изменения констант квазимономолекулярных переходов с триплетных уровней органолюминофоров в водно-спиртовых смесях – протонодонорных растворителях, происходит в результате установления и разрушения Н-связей с наноструктурными организациями в растворе. Механизм влияния Н-связей на безызлучательную деградацию триплетных состояний молекул-зондов наиболее физически приемлем для объяснения наблюдаемых процессов в водно-органических растворах. Третья часть четвертого раздела посвящена исследованию процессов структурирования водно-органических смесей с использованием методов молекулярного рассеяния света. В эксперименте исследовалось рассеяние света чистыми водно-органическими смесями (водные растворы метилового, этилового, изопропилового, трет-бутилового спирта и ацетона) и смесями, содержащими наночастицы коллоидного серебра Ag₂Ag⁺ (концентрация в растворе $C = 1 \cdot 10^{-4}$ г/л). Известно, что на концентрационное светорассеяние смешанных растворов влияют и термодинамические свойства раствора, и зависимость показателя преломления от концентрации компонента в смеси:

$$R_{S} = \frac{\pi^{2}}{2\lambda^{4}} kT \frac{\left(\frac{\partial \varepsilon}{\partial m_{1}}\right) \upsilon}{\left(\frac{\partial^{2} G^{E}}{\partial m_{1}^{2}}\right)_{P,T}},$$
(6)

где R_S – интенсивность светорассеяния на флуктуациях плотности, λ – длина волны излучения, T – температура, ε – диэлектрическая проницаемость раствора, m – мольная доля содержания органического компонента в растворе, υ – молярный объем, G^E – неидеальная часть потенциала Гиббса.

Эксперименты по исследованию интенсивности светорассеяния в водно-органических растворах показали, что интенсивности R_s молекулярного рассеяния света при смене состава водно-органической смеси имеют несколько максимумов, свидетельствующих о структурировании растворов. Представляло интерес прозондировать эти стуктурные изменения с помощью наночастиц из латекса и серебра. В качестве зондов использовались латексные наночастицы радиусом 30, 70 нм и 600 нм, а также наночастицы коллоидного серебра радиусом 20 нм. Концентрации наночастиц серебра составляли $C = 1 \cdot 10^{-4}$ г/л, а латексных наночастиц $C = 5 \cdot 10^{-3}$ масс.%. На рис.4 представлены характерные для всей серии экспериментов по молекулярному рассеянию света на наночастицах в водно-спиртовых растворах данные по измерению коэффициентов диффузии наночастиц (R= 70 нм) в водно-пропаноловых смесях и ход относительной амплитуды $A_{\text{отн}}$ первой области дисперсии диэлектрической проницаемости смеси (литературные данные) при температуре 21°С.

Из рисунка видно, что на кривой 1 имеется максимум в области клатратного структурирования смесей 13 – 17 об.% и еще один максимум в области 2 – 5 об.% содержания пропанола в смеси. При более высоких концентрациях спирта в смеси наблюдаются изменения в величинах D, аналогичные по своему характеру изменению k_T триплетных состояний молекул красителей в водно-спиртовых растворах. С целью выяснения общности происходяцих процессов структурирования в водно-спиртовых смесях и их влияния на физические параметры любых энергетических состояний в молекулах были изучены спектры флуоресценции молекул родамина 6Ж при малых концентрациях ($C = 8 \cdot 10^{-6}$ моль/л), когда нет ассоциации молекул красителя, и при концентрации ($C = 1 \cdot 10^{-4}$ моль/л), когда в воде и водноспиртовых растворах возникают ассоциированные формы красителя. Было установлено, что в области концентрации спирта 5 об.% имеется перегиб в величинах относительной интенсивнсти флуоресценции $I_{\text{отн}}^{\phi_n}$ и максимум этой величины в области 13 – 17 об.%, где возникают клатратные стуктуры. Наоборот, очень четко проявился максимум в интенсивности $I_{\text{отн}}^{\phi_n}$ растворов молекул родамина 6Ж при $C = 1 \cdot 10^{-4}$ моль/л в области 5 об.% этанола в воде, что, по-видимому, связано с разрушением асоциированных форм красителя.

Рис.4 (пояснения в тексте)

Температурные исследования диффузии латексных наночастиц (радиус R = 30 нм) в воде и при содержании этанола в смеси 5 и 10 об.% позволили вычислить энергии активации ΔE_a диффузионного движения наночастиц, которые соответственно были равны: 19,9, 9,7 и 3,8 кДж/моль. Видно, что структуры воды легко разрушаются уже при малом содержании органического компонента, и было выдвинуто предположение, что при 5 об.% содержания спирта в смеси происходит разрушение льдоподобной структуры водного раствора.

Таким образом, приведенные оптические методы исследования позволяют проследить за структурными изменениями в водно-органических растворах.

В ПЯТОМ РАЗДЕЛЕ представлены результаты исследования методом фотонной корреляционной спектроскопии микроструктуры пограничного слоя вязкой жидкости вблизи гладкой поверхности и в ядре (центре) потока (диаметр лазерного луча 100 мк). В разделе проанализированы полученные экспериментальные результаты измерения коэффициента диффузии латексных наночастиц (R = 70 - 100 нм) в ламинарном потоке жидкости при постоянной комнатной температуре 18°С. Первая серия экспериментов (калибровочная) была проведена при отсутствии потока. В результате был получен хорошо прогнозируемый результат – постоянство коэффициента диффузии латексных зондов в воде по всему объему кюветы ($D = 2,8 \cdot 10^{-8} \text{ см}^2/\text{с}$) и вблизи полированной поверхности дна кюветы.

Вторая серия экспериментов была проведена при установившемся ламинарном потоке с различными скоростями: $V_1 = 3$ мм/с и $V_2 = 6,4$ мм/с с соответствующими числами Рейнольдса : Re₁ = 60 и Re₂ = 128. При изучении макропотоков при указанных числах Рейнольдса не происходит завихрения потоков. Вместе с тем, наши экспериментальные данные свидетельствуют о значительной чувствительности коэффициента диффузии D к возникновению даже слабого направленного переноса или к образованию вихрей. При этом характеристические масштабы диффузии и направленного перемещения для частиц в потоке равны, соответственно, $L_d = \sqrt{Dt} = \sqrt{30 \cdot 10^{-8} \cdot 10^{-5}} = \sqrt{3} \cdot 10^{-6}$ см; $L_V = Vt = 0,3 \cdot 10^{-5}$ см и отличаются незначительно. Благодаря большой пространственной и временной разрешающей способности метода фотонной корреляционной спектроскопии, удалось обнаружить вихревые срывы потока при малых числах Рейнольдса. Были вычислены толщины пограничного ламинарного слоя жидкости и показано, что лучшее совпадение с экспериментом дает вычисленная толцина пограничного слоя как толщина слоя вытеснения, равная $\delta^*= 1,7$ мм при скорости потока $V_1= 3$ мм/с.

Таким образом, в результате применения метода фотонной корреляционной спектроскопии к гидродинамическим потокам было обнаружено, во-первых, подтверждение ранее полученных экспериментальных и теоретических результатов – отчетливое разделение потока на слои (вязкий подслой, буферная зона, ядро), во-вторых, были обнаружены вихревые срывы потока при малых числах Рейнольдса.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Установлено, что коэффициенты диффузии наночастиц из латекса и серебра, а также молекул сывороточного альбумина плазмы крови человека в воде вблизи поверхности твердого тела, в отличие от зеркальной поверхности, по мере удаления от пористой поверхности кремнезема и анодированного алюминия увеличиваются по характерной зависимости и стабилизируется на макроскопических расстояниях, вплоть до 2 – 3 мм от поверхности.

2. Моделирование аномальной диффузии наночастиц позволило определить фрактальную размерность d_f структурированного адсорбционного слоя из молекул воды и фрактальную размерность d_w траектории броуновского диффузионного движения наночастиц, которая уменьшается с увеличением температуры раствора; температурные исследования показали, что вода вблизи пористой поверхности имеет более жесткую структуру, чем в объеме раствора, причем различия полностью исчезают при температурах $40 - 45^{\circ}$ С.

3. Обнаружено и исследовано влияние наноструктурирования водно-спиртовых смесей на перераспределение вероятностей внутримолекулярных переходов в триплетно возбужденных молекулах родаминовых и акридиновых красителей и установлена корреляция констант дезактивации триплетных состояний с клатратным структурированием растворов. Показано, что механизм ускорения безызлучательной дезактивации триплетных состояний обусловлен установлением водородных связей со структурными образованиями в смеси.

4. Установлена взаимосвязь между наногетерогенной перестройкой в водноспиртовых смесях с изменением состава сольватных оболочек в молекулах красителей и тяжелых атомов. Показано, что состав сольватной оболочки, ее размеры значительно влияют на скорость обменных процессов в контактных комплексах взаимодействующих молекул. По результатм моделирования процессов тушения триплетных состояний акридиновых красителей внешними тяжелыми атомами йода были определены размеры сольватных оболочек.

5. Впервые обнаружено, что в широком температурном интервале экстремальные значения коэффциента аномальной диффузии наночастиц различной химической природы и размеров в водно-органических растворах обусловлены клатратной перестройкой смесей (13 – 15 объемных процентов спирта) и разрушением льдоподобных структур воды при 2 – 4-объемном процентном содержании органического компонента.

6. Впервые методом фотонной корреляционной спектроскопии при исследовании потоков вязкой жидкости (вода) с наночастицами обнаружен переход ламинарного течения в пограничном слое в вихревое при значительно меньших числах Рейнольдса, которые предсказывает теория и практика гидродинамических исследований.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Основные результаты диссертации изложены в научных журналах и материалах научных конференций.

В журналах из перечня ВАК:

- Брюханов В.В. Аномальная диффузия наночастиц в воде вблизи пористой поверхности / В.В. Брюханов, И.Г. Самусев, А.М. Иванов, Н.А. Мыслицкая // Ж. Физ. Хим. 2008. -Т.82.
 -№2. -С.1-5.
- Брюханов В.В. Диффузионное зондирование наночастицами структуры воды и водноорганических растворов вблизи пористой поверхности и в объеме в широком интервале температур / В.В. Брюханов, И.Г. Самусев, А.М. Иванов, Н.А. Мыслицкая // Изв. вузов. Физика. 2009. -Т.2. -С.8-15.
- Мыслицкая Н.А. Дезактивация триплетно возбужденных молекул родамина 6Ж и диффузия наночастиц в водно-спиртовых растворах / Н.А. Мыслицкая, А.М. Иванов, И.Г. Самусев, В.В. Брюханов // ЖПС, 2009. –Т.76. -№6. –С. 823-829.
- Мыслицкая Н.А. Применение оптических методов в исследовании пограничного слоя ламинарного потока жидкости / Н.А. Мыслицкая, А.В. Гриценко, И.Г. Самусев, В.В. Брюханов // Естественные и технические науки, 2009. -№5. –С.56-60.

В других изданиях:

- Самусев И.Г. Особенности диффузии наночастиц в структурированной жидкости вблизи пористой поверхности твердого тела / И.Г. Самусев, Н.А. Мыслицкая // Международная научная конференция «Инновации в науке и образовании – 2006»: материалы / КГТУ. -Калининград, 2006. -С. 252-255.
- 6. Иванов А.М. Диффузионная динамика монодисперсного латекса в водно-спиртовом растворе. А.М. Иванов, Н.А. Мыслицкая // Международная научная конференция «Инновации в науке и образовании – 2006»: материалы / КГТУ. -Калининград, 2006. -С. 232-233.
- 7. Иванов А.М. Эволюция фрактальной поверхности пленок алюминия при анодировании / А.М. Иванов, Д.В. Васильев, Н.А. Мыслицкая // Изв. КГТУ. 2007, -№12. -С.232-235.
- Иванов А.М. Исследование водно-спиртовых растворов методом фотонной корреляционной спектроскопии / А.М. Иванов, Н.А. Мыслицкая // Материалы XIV Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов». М.: МГУ им. М.В.Ломоносова, 11 – 14 апреля 2007 г. -Т.2. -С.143.
- Иванов А.М. Исследование фрактальной структуры поверхности пленок алюминия методом малоуглового рассеяния света / А.М. Иванов, Н.А. Мыслицкая // V Международная научная конференция «Инновации в науке и образовании – 2007» (23 – 25 октября 2007 г.): материалы / КГТУ, -Ч.1, -Калининград, 2007. -С.239.
- 10. Иванов А.М. Исследование фрактальной наноструктуры поверхности пленок анодиро-

ванного алюминия методом малоуглового рассеяния света / А.М. Иванов, Н.А. Мыслицкая, В.В. Брюханов // Международная научная конференция «Эксклав: из настоящего в будущее» (23 – 25 октября 2007 г.): материалы / КГТУ, -Калининград, 2007. -С.20-21.

- 11. Васильев Д.Н. Структурная память воды вблизи фрактальной поверхности твердого тела, в объеме водно-органических смесей и ее значение для медико-биологических процессов / Д.Н. Васильев, Н.А.Мыслицкая // V международная научная конференция «Инновации в науке и образовании – 2007» (23 – 25 октября 2007 г.): материалы докладов номинации «У.М.Н.И.К» / КГТУ. –Калининград, 2007, -С.10-13.
- 12. Иванов А.М. Изучение структуры тонких пленок воды в порах фрактальной поверхности методом малоуглового рассеяния света / А.М. Иванов, Д.В. Васильев, Н.А. Мыслицкая // Изв. КГТУ. 2008, -№14. -С.207-211.
- 13. Брюханов В.В. Изучение структуры тонких пленок воды в порах фрактальной поверхности методом малоуглового рассеяния света // В.В. Брюханов, А.М. Иванов, Д.В. Васильев, Н.А. Мыслицкая // Материалы VI юбилейной Международной конференции «Инновации в науке и образовании – 2008». -Калининград. -КГТУ. 2008 г. -С.177-179.
- 14. Иванов А.М. Структурная память воды вблизи фрактальной поверхности твердого тела, в объеме водно-органических смесей и ее значение для медико-биологических процессов / А.М. Иванов, В.В. Брюханов, Н.А. Мыслицкая // Альманах клинической медицины. III Троицкая конференция «Медицинская физика и инновации в медицине». -Москва. 2008 г. -Т.1. -С.168-172.
- 15. Иванов А.М. Структурная память воды вблизи фрактальной поверхности твердого тела, в объеме водно-органических смесей и ее значение для медико-биологических процессов / А.М. Иванов, В.В. Брюханов, Н.А. Мыслицкая // Тезисы XV Всероссийской конференции «Структура и динамика молекулярных систем». -Яльчик. 2008. -С.137.
- 16. Брюханов В.В. Исследования структурирования водных и водноорганических систем вблизи фрактальной поверхности методом молекулярного рассеяния света / В.В. Брюханов, Н.А. Мыслицкая, А.М. Иванов // Международная конференция «Фотоника молекулярных наноструктур» (16 – 19 сентября 2009 г.): материалы конференции. –Оренбург. -ОГУ. 2009 г., -С.17-18.
- 17. Гриценко А.В. Исследование пограничного слоя ламинарного потока жидкости в гладкой трубе методом фотонной корреляционной спектроскопии / А.В. Гриценко, Н.А. Мыслицкая, А.М. Иванов, И.Г. Самусев // Изв. КГТУ. 2009, -№16. -С.197-203.
- 18. Мыслицкая Н.А. О механизме безызлучательной дезактивации триплетных состояний молекул красителей при малом содержании спирта в воде / Н.А. Мыслицкая, А.М. Иванов, И.Г. Самусев, В.В. Брюханов // Изв. КГТУ. 2009, -№16. –С.204-210.
- Мыслицкая Н.А. Исследование особенностей диффузионного движения молекул альбумина методом фотонной корреляционной спектроскопии / Н.А. Мыслицкая, А.М.Иванов, В.В. Брюханов // VII Международная научная конференция «Инновации в науке и образовании – 2009»: материалы. Калининград, ФГОУ ВПО «КГТУ» (20-22 октября 2009г.), Ч.1, -С.224-227.

Подписано в печать 10.11.2009г. Заказ 17. Объем 1,5 п.л.; 1,1 уч.-изд.л. Бумага 60х84 (1/16). Тираж 100 экз. Издательство ФГОУ ВПО «КГТУ». Калининград, Советский проспект, 1